447 research outputs found

    Reduction of electromagnetic exposure using hybrid (DVB-H/UMTS) networks

    Get PDF
    The hybrid mobile communication network described in this paper consists of a point-to-point network (UMTS) and a point-to-multipoint network (DVB-H). Using an additional DVB-H network increases the downlink capacity of the communications system. Another benefit of combining these two networks is an optimised transfer of data by collecting several user requests for a single response via the broadcast network DVB-H. It is analysed how the hybrid network structure influences the electromagnetic exposure. Therefore, realistic scenarios have been developed consisting of different user behaviour and different network structures. These scenarios provide building data for investigations of indoor coverage and realistic propagation of signals. In order to evaluate the grade of exposure, criteria have been defined. These criteria have been used for comparing a hybrid network with a single UMTS network in terms of electromagnetic exposure. The simulation results of the scenarios are shown for different network structures and network configurations

    Hypersensitivity to perturbations of quantum-chaotic wave-packet dynamics

    Full text link
    We re-examine the problem of the "Loschmidt echo", which measures the sensitivity to perturbation of quantum chaotic dynamics. The overlap squared M(t)M(t) of two wave packets evolving under slightly different Hamiltonians is shown to have the double-exponential initial decay exp(constant×e2λ0t)\propto \exp(-{\rm constant}\times e^{2\lambda_0 t}) in the main part of phase space. The coefficient λ0\lambda_0 is the self-averaging Lyapunov exponent. The average decay Mˉeλ1t\bar{M}\propto e^{-\lambda_1 t} is single exponential with a different coefficient λ1\lambda_1. The volume of phase space that contributes to Mˉ\bar{M} vanishes in the classical limit 0\hbar\to 0 for times less than the Ehrenfest time τE=12λ01ln\tau_E=\frac{1}{2}\lambda_0^{-1}|\ln \hbar|. It is only after the Ehrenfest time that the average decay is representative for a typical initial condition.Comment: 4 pages, 4 figures, [2017: fixed broken postscript figures

    Semiclassical properties and chaos degree for the quantum baker's map

    Get PDF
    We study the chaotic behaviour and the quantum-classical correspondence for the baker's map. Correspondence between quantum and classical expectation values is investigated and it is numerically shown that it is lost at the logarithmic timescale. The quantum chaos degree is computed and it is demonstrated that it describes the chaotic features of the model. The correspondence between classical and quantum chaos degrees is considered.Comment: 30 pages, 4 figures, accepted for publication in J. Math. Phy

    Classical limit in terms of symbolic dynamics for the quantum baker's map

    Full text link
    We derive a simple closed form for the matrix elements of the quantum baker's map that shows that the map is an approximate shift in a symbolic representation based on discrete phase space. We use this result to give a formal proof that the quantum baker's map approaches a classical Bernoulli shift in the limit of a small effective Plank's constant.Comment: 12 pages, LaTex, typos correcte

    Chaos for Liouville probability densities

    Full text link
    Using the method of symbolic dynamics, we show that a large class of classical chaotic maps exhibit exponential hypersensitivity to perturbation, i.e., a rapid increase with time of the information needed to describe the perturbed time evolution of the Liouville density, the information attaining values that are exponentially larger than the entropy increase that results from averaging over the perturbation. The exponential rate of growth of the ratio of information to entropy is given by the Kolmogorov-Sinai entropy of the map. These findings generalize and extend results obtained for the baker's map [R. Schack and C. M. Caves, Phys. Rev. Lett. 69, 3413 (1992)].Comment: 26 pages in REVTEX, no figures, submitted to Phys. Rev.

    Optimal generalized quantum measurements for arbitrary spin systems

    Get PDF
    Positive operator valued measurements on a finite number of N identically prepared systems of arbitrary spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted by a SU(2 J+1) covariant constraint. This representation allows for a simple description of the equations to be fulfilled by optimal measurements. We explicitly find the minimal POVM for the N=2 case, a rigorous bound for N=3 and set up the analysis for arbitrary N.Comment: LateX, 12 page

    Information dynamics in cavity QED

    Get PDF
    A common experimental setup in cavity quantum electrodynamics (QED) consists of a single two-level atom interacting with a single mode of the electromagnetic field inside an optical cavity. The cavity is externally driven and the output is continuously monitored via homodyne measurements. We derive formulas for the optimal rates at which these measurements provide information about (i) the quantum state of the system composed of atom and electromagnetic field, and (ii) the coupling strength between atom and field. We find that the two information rates are anticorrelated.Comment: 11 pages, 1 figure, final versio

    Quantum computers in phase space

    Full text link
    We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier Transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to directly measure the Wigner function in a given phase space point by means of a tomographic method that, itself, can be interpreted as a simple quantum algorithm.Comment: 16 pages, 7 figures, to appear in Phys Rev

    Qubit-Qutrit Separability-Probability Ratios

    Full text link
    Paralleling our recent computationally-intensive (quasi-Monte Carlo) work for the case N=4 (quant-ph/0308037), we undertake the task for N=6 of computing to high numerical accuracy, the formulas of Sommers and Zyczkowski (quant-ph/0304041) for the (N^2-1)-dimensional volume and (N^2-2)-dimensional hyperarea of the (separable and nonseparable) N x N density matrices, based on the Bures (minimal monotone) metric -- and also their analogous formulas (quant-ph/0302197) for the (non-monotone) Hilbert-Schmidt metric. With the same seven billion well-distributed (``low-discrepancy'') sample points, we estimate the unknown volumes and hyperareas based on five additional (monotone) metrics of interest, including the Kubo-Mori and Wigner-Yanase. Further, we estimate all of these seven volume and seven hyperarea (unknown) quantities when restricted to the separable density matrices. The ratios of separable volumes (hyperareas) to separable plus nonseparable volumes (hyperareas) yield estimates of the separability probabilities of generically rank-six (rank-five) density matrices. The (rank-six) separability probabilities obtained based on the 35-dimensional volumes appear to be -- independently of the metric (each of the seven inducing Haar measure) employed -- twice as large as those (rank-five ones) based on the 34-dimensional hyperareas. Accepting such a relationship, we fit exact formulas to the estimates of the Bures and Hilbert-Schmidt separable volumes and hyperareas.(An additional estimate -- 33.9982 -- of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4 one is quite clearly close to integral too.) The doubling relationship also appears to hold for the N=4 case for the Hilbert-Schmidt metric, but not the others. We fit exact formulas for the Hilbert-Schmidt separable volumes and hyperareas.Comment: 36 pages, 15 figures, 11 tables, final PRA version, new last paragraph presenting qubit-qutrit probability ratios disaggregated by the two distinct forms of partial transpositio

    Conditional evolution in single-atom cavity QED

    Full text link
    We consider a typical setup of cavity QED consisting of a two-level atom interacting strongly with a single resonant electromagnetic field mode inside a cavity. The cavity is resonantly driven and the output undergoes continuous homodyne measurements. We derive an explicit expression for the state of the system conditional on a discrete photocount record. This expression takes a particularly simple form if the system is initially in the steady state. As a byproduct, we derive a general formula for the steady state that had been conjectured before in the strong driving limit.Comment: 15 pages, 1 postscript figure, added discussion of mode
    corecore