63 research outputs found

    Efficient Decoding of Topological Color Codes

    Full text link
    Color codes are a class of topological quantum codes with a high error threshold and large set of transversal encoded gates, and are thus suitable for fault tolerant quantum computation in two-dimensional architectures. Recently, computationally efficient decoders for the color codes were proposed. We describe an alternate efficient iterative decoder for topological color codes, and apply it to the color code on hexagonal lattice embedded on a torus. In numerical simulations, we find an error threshold of 7.8% for independent dephasing and spin flip errors.Comment: 7 pages, LaTe

    New Protocols and Lower Bound for Quantum Secret Sharing with Graph States

    Full text link
    We introduce a new family of quantum secret sharing protocols with limited quantum resources which extends the protocols proposed by Markham and Sanders and by Broadbent, Chouha, and Tapp. Parametrized by a graph G and a subset of its vertices A, the protocol consists in: (i) encoding the quantum secret into the corresponding graph state by acting on the qubits in A; (ii) use a classical encoding to ensure the existence of a threshold. These new protocols realize ((k,n)) quantum secret sharing i.e., any set of at least k players among n can reconstruct the quantum secret, whereas any set of less than k players has no information about the secret. In the particular case where the secret is encoded on all the qubits, we explore the values of k for which there exists a graph such that the corresponding protocol realizes a ((k,n)) secret sharing. We show that for any threshold k> n-n^{0.68} there exists a graph allowing a ((k,n)) protocol. On the other hand, we prove that for any k< 79n/156 there is no graph G allowing a ((k,n)) protocol. As a consequence there exists n_0 such that the protocols introduced by Markham and Sanders admit no threshold k when the secret is encoded on all the qubits and n>n_0

    Quantum generalized Reed-Solomon codes: Unified framework for quantum MDS codes

    Full text link
    We construct a new family of quantum MDS codes from classical generalized Reed-Solomon codes and derive the necessary and sufficient condition under which these quantum codes exist. We also give code bounds and show how to construct them analytically. We find that existing quantum MDS codes can be unified under these codes in the sense that when a quantum MDS code exists, then a quantum code of this type with the same parameters also exists. Thus as far as is known at present, they are the most important family of quantum MDS codes.Comment: 9 pages, no figure

    Quantum Stabilizer Codes Embedding Qubits Into Qudits

    Full text link
    We study, by means of the stabilizer formalism, a quantum error correcting code which is alternative to the standard block codes since it embeds a qubit into a qudit. The code exploits the non-commutative geometry of discrete phase space to protect the qubit against both amplitude and phase errors. The performance of such code is evaluated on Weyl channels by means of the entanglement fidelity as function of the error probability. A comparison with standard block codes, like five and seven qubit stabilizer codes, shows its superiority.Comment: 15 pages, 2 figures (improved version); accepted for publication in Phys. Rev.

    Magic state distillation in all prime dimensions using quantum Reed-Muller codes

    Get PDF
    We propose families of protocols for magic state distillation -- important components of fault tolerance schemes --- for systems of odd prime dimension. Our protocols utilize quantum Reed-Muller codes with transversal non-Clifford gates. We find that, in higher dimensions, small and effective codes can be used that have no direct analogue in qubit (two-dimensional) systems. We present several concrete protocols, including schemes for three-dimensional (qutrit) and five-dimensional (ququint) systems. The five-dimensional protocol is, by many measures, the best magic state distillation scheme yet discovered. It excels both in terms of error threshold with respect to depolarising noise (36.3%) and the efficiency measure know as "yield", where, for a large region of parameters, it outperforms its qubit counterpart by many orders of magnitude.Comment: Updated from V1 to include results on the remarkable d=5 cas

    Sparse Quantum Codes from Quantum Circuits

    Get PDF
    Sparse quantum codes are analogous to LDPC codes in that their check operators require examining only a constant number of qubits. In contrast to LDPC codes, good sparse quantum codes are not known, and even to encode a single qubit, the best known distance is O(√n log(n)), due to Freedman, Meyer and Luo. We construct a new family of sparse quantum subsystem codes with minimum distance n[superscript 1 - ε] for ε = O(1/√log n). A variant of these codes exists in D spatial dimensions and has d = n[superscript 1 - ε - 1/D], nearly saturating a bound due to Bravyi and Terhal. Our construction is based on a new general method for turning quantum circuits into sparse quantum subsystem codes. Using this prescription, we can map an arbitrary stabilizer code into a new subsystem code with the same distance and number of encoded qubits but where all the generators have constant weight, at the cost of adding some ancilla qubits. With an additional overhead of ancilla qubits, the new code can also be made spatially local.National Science Foundation (U.S.) (Grant CCF-1111382)United States. Army Research Office (Contract W911NF-12-1-0486

    From Skew-Cyclic Codes to Asymmetric Quantum Codes

    Full text link
    We introduce an additive but not F4\mathbb{F}_4-linear map SS from F4n\mathbb{F}_4^{n} to F42n\mathbb{F}_4^{2n} and exhibit some of its interesting structural properties. If CC is a linear [n,k,d]4[n,k,d]_4-code, then S(C)S(C) is an additive (2n,22k,2d)4(2n,2^{2k},2d)_4-code. If CC is an additive cyclic code then S(C)S(C) is an additive quasi-cyclic code of index 22. Moreover, if CC is a module θ\theta-cyclic code, a recently introduced type of code which will be explained below, then S(C)S(C) is equivalent to an additive cyclic code if nn is odd and to an additive quasi-cyclic code of index 22 if nn is even. Given any (n,M,d)4(n,M,d)_4-code CC, the code S(C)S(C) is self-orthogonal under the trace Hermitian inner product. Since the mapping SS preserves nestedness, it can be used as a tool in constructing additive asymmetric quantum codes.Comment: 16 pages, 3 tables, submitted to Advances in Mathematics of Communication

    Generalized Toric Codes Coupled to Thermal Baths

    Get PDF
    We have studied the dynamics of a generalized toric code based on qudits at finite temperature by finding the master equation coupling the code's degrees of freedom to a thermal bath. As a consequence, we find that for qutrits new types of anyons and thermal processes appear that are forbidden for qubits. These include creation, annihilation and diffusion throughout the system code. It is possible to solve the master equation in a short-time regime and find expressions for the decay rates as a function of the dimension dd of the qudits. Although we provide an explicit proof that the system relax to the Gibbs state for arbitrary qudits, we also prove that above a certain crossing temperature, qutrits initial decay rate is smaller than the original case for qubits. Surprisingly this behavior only happens with qutrits and not with other qudits with d>3d>3.Comment: Revtex4 file, color figures. New Journal of Physics' versio
    • …
    corecore