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ABSTRACT
Sparse quantum codes are analogous to LDPC codes in that
their check operators require examining only a constant num-
ber of qubits. In contrast to LDPC codes, good sparse quan-
tum codes are not known, and even to encode a single qubit,
the best known distance is O(

√
n log(n)), due to Freedman,

Meyer and Luo.
We construct a new family of sparse quantum subsystem

codes with minimum distance n1−ε for ε = O(1/
√

logn). A
variant of these codes exists in D spatial dimensions and has
d = n1−ε−1/D, nearly saturating a bound due to Bravyi and
Terhal.

Our construction is based on a new general method for
turning quantum circuits into sparse quantum subsystem
codes. Using this prescription, we can map an arbitrary
stabilizer code into a new subsystem code with the same
distance and number of encoded qubits but where all the
generators have constant weight, at the cost of adding some
ancilla qubits. With an additional overhead of ancilla qubits,
the new code can also be made spatially local.

1. INTRODUCTION
Sparse quantum error-correcting codes obey the simple

constraint that only a constant number of qubits need to
be measured at a time to extract syndrome bits. Consid-
erable effort has been devoted to studying sparse quantum
codes, most notably in the context of topological quantum
error correction [43]. This effort is driven by the fact that
the sparsity constraint is quite natural physically, and ex-
isting fault-tolerant thresholds [38] and overheads [24] are
optimized when the underlying code is sparse. Despite this
effort, finding families of good sparse quantum codes – i.e.
codes with asymptotically constant rate and relative dis-
tance – remains an open problem, in stark contrast to the
situation for classical codes (see e.g. [33]).
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Quantum subsystem codes [37] form a broad generaliza-
tion of standard stabilizer codes where a subset of logical
qubits is sacrificed to allow for extra gauge degrees of free-
dom. The two principle advantages of subsystem codes are
that the measurements needed to extract syndrome infor-
mation are in general sparser and the errors only need to
be corrected modulo gauge freedom, which often improves
fault-tolerance thresholds [1] (though not always [24]).

In this paper, we consider a general recipe that constructs
a sparse quantum subsystem code for every Clifford quan-
tum circuit. The new code resembles the circuit in that the
layout of the circuit is replaced with new qubits in place of
the inputs and outputs of each of the circuit elements. The
gauge generators are localized to the region around the erst-
while circuit elements, and thus the sparsity s of the new
code is constant when the circuit is composed of few-qubit
gates.

When the circuit is a special form of a fault-tolerant syn-
drome measurement circuit for a “base” quantum stabilizer
code encoding k qubits with distance d, then the new sparse
subsystem code inherits the k and d parameters of the base
code. We construct general fault-tolerant circuits of the req-
uisite special form, and from this we show how every stabi-
lizer code can be mapped into a sparse subsystem code with
the same k and d as the original base code. The number of
physical qubits n required for the new code is roughly the
circuit size, and this can be chosen to be proportional to
the sum of the weights of the original stabilizer generators
if we do not insist on spatial locality of the circuit elements.
Formally we have:

Theorem 1. Given any [n0, k0, d0] quantum stabilizer code
with stabilizer generators of weight w1, . . . , wn0−k0 , there is
an associated [n, k, d] quantum subsystem code whose gauge
generators have weight O(1) and where k = k0, d = d0, and
n = O(n0 +

∑
i wi). This mapping is constructive given the

stabilizer generators of the base code.

The proof is in Section 5 of the appended long version. It
involves applying our circuit-to-code construction, as well as
a new fault-tolerant measurement gadget that uses expander
graphs. While expander graphs have played an important
role in classical error correction, to our knowledge this is
their first use in quantum error correction.

We then demonstrate the power of Theorem 1 by applying
it to two natural scenarios: first to concatenated codes and
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then to spatially local codes. By applying our construction
to concatenated stabilizer codes, we obtain families of sparse
subsystem codes with by far the best distance to date. The
previous best distance for a sparse quantum code was due to
Freedman, Meyer, and Luo [23], who constructed a family of
stabilizer codes encoding a single logical qubit having min-
imum distance d = O(

√
n logn). Our construction provides

for the following improvement in parameters.

Theorem 2. Quantum error correcting subsystem codes
exist with gauge generators of weight O(1) and minimum

distance d = n1−O(1/
√
logn).

It is natural to ask if our construction can also be made
spatially local. By spatially local we mean that all of the
qubits can be arranged on the vertices of a square lattice in
D dimensions with each gauge generator having support in
a region of size O(1). Incorporating spatial locality is indeed
also possible, though it will in general increase the size of
the circuit we use, and hence the total number of qubits in
the subsystem code.

Theorem 3. Spatially local subsystem codes exist in D ≥
2 dimensions with gauge generators of weight O(1) and min-

imum distance d = n1−O(1/
√
logn)−1/D.

Although the spatial locality constraint comes at the cost
of decreased performance in the rate and relative distance,
this scaling of the distance is nearly optimal. Several upper
bounds have been proven about the parameters of spatially
local subsystem codes inD dimensions. For this case, Bravyi
and Terhal [11] have shown that d ≤ O(n1−1/D). Our codes
nearly saturate this bound and have the virtue that they are
in general constructive. In particular, our codes in D = 3
dimensions already improve on the previous best results (by
Ref. [23] again) for arbitrary sparse codes and achieve d =

n2/3−O(1/
√

logn).
Furthermore, for the class of local commuting projector

codes in D dimensions (a class that generalizes stabilizer
codes, but does not contain general subsystem codes), Bravyi,
Poulin, and Terhal [10] have shown the inequality

kd2/(D−1) ≤ O(n) . (1)

It is open whether a similar upper bound holds for subsystem
codes, but a corollary of our main results is that there are
spatially local subsystem codes for every D ≥ 2 that achieve

k ≥ Ω
(
n1−1/D) and d ≥ Ω

(
n(1−1/D)/2), (2)

implying that kd2/(D−1) ≥ Ω(n).
The remainder of the paper is organized as follows. In

Section 2 we review the theory of subsystem codes and the
prior art. We define the construction for our codes in Sec-
tion 3 and review the relevant properties of the construction
in Section 4. Those sections provide a proof of Theorem 1
conditional on the existence of certain fault-tolerant circuits
for measuring stabilizer-code syndromes, which we subse-
quently show exist in Section 5, thus completing the proof.
Sections 6 and 7 are devoted to the proofs of Theorems 2
and 3 respectively, and we conclude with a discussion of open
problems in Section 8.

2. BACKGROUND AND RELATED WORK

2.1 Quantum Subsystem Codes
For a system of n qubits, we can consider the group Pn of

all n-fold tensor products of single-qubit real-valued Pauli
operators {I,X, iY, Z} and including the phases {±1}. A
stabilizer code (see e.g. [35]) is the joint +1 eigenspace of a
group of commuting Pauli operators S = 〈S1, . . . , Sl〉, where
the Si label a generating set for the group. (To avoid trivial
codes, we require that −I 6∈ S.) If each of the l genera-
tors are independent, then the code space is 2k-dimensional
where k = n− l, and there exist k pairs of logical operators
which generate a group L = 〈X1, Z1, . . . , Xk, Zk〉. In gen-
eral, the logical group is isomorphic to N(S)/S where N(S)
is the normalizer of S in Pn, meaning the set of all Paulis
that commute with S as a set. The logical group is isomor-
phic to Pk, meaning that for each logical operator in L we
have that [Li, Lj ] = 0 for all i 6= j, and XiZi = −ZiXi for
all i. The fact that L ⊆ N(S) means that [Li, Sj ] = 0 for
all Sj ∈ S. The weight of a Pauli operator is the number of
non-identity tensor factors, and the distance of a code is the
weight of the minimum weight element among all possible
non-trivial logical operators (i.e. those which are not pure
stabilizers).

A subsystem code [37, 30] is a generalization of a stabilizer
code where we ignore some of the logical qubits and treat
them as“gauge”degrees of freedom. More precisely, in a sub-
system code the stabilized subspace HS further decomposes
into a tensor product HS = HL ⊗HG, where by convention
we still require that HL is a 2k-dimensional space, and the
space HG contains the unused logical qubits called gauge
qubits. The gauge qubits give rise to a gauge group G gen-
erated by former logical operators Gi (which obey the Pauli
algebra commutation relations for a set of qubits) together
with the stabilizer operators. We note that −I is always in
the gauge group, assuming that there is at least one gauge
qubit. The logical operators in a subsystem code are given
by L = N(G) and still preserve the code space. The cen-
ter of the gauge group Z(G) is defined to be the subgroup
of all elements in G that commute with everything in G.
Since Z(G) contains −I, it cannot be the set of stabilizers
for any nontrivial subspace. Instead we define the stabilizer
subgroup S to be isomorphic to Z(G)/{±I}. Concretely, if
Z(G) has generators 〈−I, S1, . . . , Sl〉 then we define the sta-
bilizer group to be 〈ε1S1, . . . , εlSl〉 for some arbitrary choice
of ε1, . . . , εl ∈ {±1}.

A classic example of a subsystem code is the Bacon-Shor
code [4] having physical qubits on the vertices of an L × L
lattice (so n = L2). The gauge group is generated by neigh-
boring pairs of XX and ZZ operators across the horizontal
and vertical links respectively. The logical quantum infor-
mation is encoded by a string of X operators along a hori-
zontal line and a string of Z operators along a vertical line,
and the code distance is L =

√
n.

We differentiate between two types of logical operators in
a subsystem code: bare logical operators are those that act
trivially on the gauge qubits, while dressed logical operators
may in general act nontrivially on both the logical and gauge
qubits. In other words, the bare logical group is N(G)/S
while the dressed logical group is N(S)/S. The distance of a
subsystem code is the minimum weight among all nontrivial
dressed logical operators, i.e. min{|g| : g ∈ N(S)− S}. We



say that a code is a [n, k, d] code if it uses n physical qubits
to encode k logical qubits and has distance d.

2.2 Sparse Quantum Codes and Related Work
The sparsity of a code is defined with respect to a given

set of gauge generators. If each generator has weight at most
sg and each qubit partakes in at most sq generators, then
we define s = max{sg, sq} and say the code is s-sparse. We
call a code family simply sparse if s = O(1). The most im-
portant examples of sparse codes are topological stabilizer
codes, also called homology codes because of their relation
to homology theory. The archetype for this code family is
Kitaev’s toric code [28], which encodes k = O(1) qubits and
has minimum distance d = O(

√
n) (although it can correct

a constant fraction of random errors). It is known that 2D
homological codes obey d ≤ O(

√
n) [22]. Many other im-

portant examples of such codes are known; see Ref. [43] for
a survey.

The discovery of subsystem codes [37, 30] led to the study
of sparse subsystem codes, first in the context of topological
subsystem codes, of which there are now many examples [4,
5, 19, 13, 42, 39, 8, 6, 12]. However, these codes are all con-
cerned with the case k = O(1). Work on codes with large k
initially focused on random codes, where it was shown that
random stabilizers have k, d ∝ n [16, 15, 3], and more re-
cently that short random circuits generate good codes [14].
There are also known constructive examples of good stabi-
lizer codes such as those constructed by Ashikhmin, Litsyn,
and Tsfasman [2] and others [17, 18, 34, 31]. All of these
codes have stabilizer generators with weight ∝ n, however.

A growing body of work has made simultaneous improve-
ment on increasing k and d while keeping the code sparse.
The best distance achievable with a sparse code is due to
Freedman, Meyer and Luo [23], encoding a single qubit with
distance O(

√
n logn). A different construction called hyper-

graph product codes by Tillich and Zémor [45] achieves a
distance of O(

√
n) but with constant rate. These codes, like

the toric code, can still correct a constant fraction of random
errors [29] but they abandon spatial locality in general.

Some notion of spatial locality can be recovered by work-
ing with more exotic geometries than a simple cubic lattice
in Euclidean space. Zémor constructed a family of hyper-
bolic surface codes with constant rate and logarithmic dis-
tance [46]; see also [26]. Guth and Lubotzky [25] have im-
proved this by constructing sparse codes with constant rate
and d = O(n3/10). These codes and those of Ref. [23] live
most naturally on cellulations of Riemannian manifolds with
non-Euclidean metrics and unfortunately cannot be embed-
ded into a cubic lattice in D ≤ 3 without high distortion.

The Bacon-Shor codes [4] mentioned in the previous sec-
tion were generalized by Bravyi [7] to yield a family of sparse
subsystem codes encoding k ∝

√
n qubits while still re-

specting the geometric locality of the gauge generators in
D = 2 dimensions and maintaining the distance d =

√
n.

This is an example of how subsystem codes can outper-
form stabilizer codes under spatial locality constraints, since
two-dimensional stabilizer codes were proven in [7] to sat-
isfy kd2 ≤ O(n) (which generalizes [10] in D dimensions to

kd2/(D−1) ≤ O(n)). Bravyi [7] has also shown that all spa-
tially local subsystem codes in D = 2 dimensions obey the
bound kd ≤ O(n) for D = 2 and so this scaling is optimal
for two dimensions.

A family of O(
√
n)-sparse codes called homological prod-

uct codes, due to Bravyi and Hastings [9], leverage random
codes with added structure to create good stabilizer codes
with a nontrivial amount of sparsity, but no spatial locality
of the generators.

By way of comparison, classical sparse codes exist that
are able to achieve linear rate and distance, and can be en-
coded and decoded from a constant fraction of errors in lin-
ear time [41].

3. CONSTRUCTING THE CODES
Our codes are built from existing stabilizer codes, and

indeed our construction can be thought of as a recipe for
sparsifying stabilizer codes.

3.1 The Base Code and Error-Detecting Cir-
cuits

Our code begins with an initial code called C0 which is a
stabilizer code with stabilizer group S0. By a slight abuse of
notation, we use C0 to also refer to the actual code space. It
uses n0 qubits to encode k0 logical qubits with distance d0.
Assume that there exists an error-detecting circuit consist-
ing of the following elements: (i) A total of na ancilla qubits
initialized in the |0〉 state; (ii) A total of n0 data qubits;
(iii) A Clifford unitary UED applied to the data qubits and
ancillas; (iv) Single-qubit postselections onto the |0〉 state.
Denote the resulting operator VED. By ordering the qubits
appropriately we have

VED = (I⊗n0 ⊗ 〈0|⊗na)UED(I⊗n0 ⊗ |0〉⊗na) . (3)

This satisfies V †EDVED ≤ I automatically.

Definition 4. A circuit VED is a good error-detecting
circuit for C0 if V †EDVED is the projector onto C0.

This means that it always accepts states in C0 and always
rejects states orthogonal to C0, assuming no errors occur
while running the circuit. In other words,

V †EDVED =

(I⊗n0 ⊗ 〈0|⊗na)U†ED(I⊗n0 ⊗ |0〉〈0|⊗na)UED(I⊗n0 ⊗ |0〉⊗na)

=
1

|S0|
∑
s∈S0

s . (4)

We allow the initializations and postselections to occur
at staggered times across the circuit, so that the circuit is
not simply a rectangular block in general. Describing this
in sufficient detail for our purposes necessitates introducing
somewhat cumbersome notation. The ith qubit is input or
initialized at time T in

i and output or measured at time T out
i .

All initializations, postselections, and elementary gates take
place at half-integer time steps. Thus, a single-qubit gate
acting at time, say, t = 2.5, can be thought of as mapping
the state from time t = 2 to t = 3. The total depth of the
circuit is then maxi T

out
i −mini T

in
i + 1.

We defer a discussion of fault-tolerance in our circuits until
Sec. 5.

3.2 Localized codes
To construct our code, we place a physical qubit at each

integer spacetime location in the circuit. Thus, each wire
of the circuit now supports up to T physical qubits, and in
general the ith wire will hold T out

i −T in
i + 1 physical qubits.



Circuit element Gauge generators

I XX,ZZ

H ZX,XZ

P Y X,ZZ

XX
X I

, I I
XX

, ZZ
I I
, Z I
ZZ

〈0| Z

|0〉 Z

Table 1: Dictionary for transforming circuit ele-
ments into generators of the gauge group. For ev-
ery input and output of a circuit element in the left
column, we add the corresponding generators from
the right column, placed on the appropriate phys-
ical qubits. (This is the purpose of the ηit map in
the main text.) We only list the gauge generators
for the standard generators of the Clifford group,
but the circuit identities of any Clifford circuit can
be used instead. Pre- and postselections are spe-
cial and have only one gauge generator associated
to them.

Assume each T in
i ≥ 0 and let T = maxi T

out
i . Then each

qubit is active for some subset of times {0, . . . , T}. In some
of our analysis it will be convenient to pretend that each
qubit is present for the entire time {0, . . . , T}, and that all
initializations and measurements happen at times 0 and T
respectively. During the “dummy” time steps the qubits are
acted upon with identity gates. It is straightforward to see
that the code properties (except for total number of physi-
cal qubits) are identical with or without these dummy time
steps. Thus, we will present our proofs as though dummy
qubits are present, but will perform our resource accounting
without them.

We introduce the function ηit(P ) to denote placing a Pauli
P at spacetime position (i, t). If P is a multi-qubit Pauli
then we let ηi(P ) or ηt(P ) denote placing it either on row
i coming from circuit qubit i or on column t corresponding
to circuit time slice t. For a two-qubit gate U , we write
ηi,jt (U) to mean that we place U at locations (i, t) and (j, t).
When describing a block of qubits without this spacetime
structure, we also use the more traditional notation of Pi to
denote Pauli P acting on position i: that is, Pi := I⊗i−1 ⊗
P ⊗ I⊗n−i, where n is usually understood from context.

With this notation in hand, we define the gauge group of
our codes. This is summarized in Table 1, and defined more
precisely below. The gauge group will have 2k generators
per k-qubit gate and one for each measurement or initializa-
tion. Let U be a single qubit gate that acts on qubit i as it
transitions from time t to time t+ 1. Corresponding to this
gate, we add the gauge generators

ηit+1(UXU†)ηit(X ) and ηit+1(UZU†)ηit(Z ). (5a)

H

〈0| |0〉
〈0| |0〉

M A

D

012 1/23/2

1

2

3

4

5

j

t

Figure 1: Illustration of the circuit-to-code map-
ping. Using integral spacetime coordinates (j, t), the
open circles at integer time steps (j, t) are physical
qubits of the subsystem code, while gates of the cir-
cuit are “syncopated” and live at half-integer time
steps (j, t). The three sets of qubits in the dashed
boxes labelled D, A, and M correspond to the input
qubits for the base code, the ancillas, and the mea-
surements (postselections) respectively. For this cir-
cuit, for example, we have among others the gauge
generators η10(X)η11(Z) and η10(Z)η11(X) because these
are the circuit identities for the Hadamard gate at
spacetime location (1, 1/2). Note also that we pad
each line with identity gates to ensure that there are
always an even number of gates on each line, which is
important to maintain our code properties (see long
version for details). We draw our circuit diagram
with time moving from right to left to match the
way that operators are composed; e.g. if we apply
U1 then U2 then U3 the resulting composite operator
is U3U2U1.

Similarly for a two-qubit gate U acting on qubits i, j at time
t+ 1/2, we add the generators

{ηi,jt+1(UPU†)ηi,jt (P ) : P ∈ {X ⊗ I, Z ⊗ I, I ⊗X, I ⊗Z}i,j} .
(5b)

More generally, a k-qubit gate U acting on qubits i1, . . . , ik
at time t+ 1/2 has generators

{ηi1,...,ikt+1 (UPU†)η
i1,...,ik
t (P ) :

P = I⊗j−1 ⊗Q⊗ I⊗k−j , j ∈ [k], Q ∈ {X,Z}} . (5c)

For measurements or initializations of qubit i we add gener-
ators ηiTout

i
(Z) or ηi

T in
i

(Z) respectively.

An illustration of the mapping from the circuit to the code
is given in Fig. 1.

4. CODE PROPERTIES
In this section we prove that our codes match—in the

sense of Theorem 1—the performance of the base codes with
respect to k and d. It constitutes the main technical part of
our result. Specifically we prove (in the long version):

Theorem 5. If V is a fault-tolerant error-detection cir-
cuit (i.e. satisfying Definitions 4 and 7) for a code with k



encoded qubits and distance d then the corresponding local-
ized code has also has k encoded qubits and distance d.

This theorem relies on the following definitions.

Definition 6. Given a collection of errors E = (Et)t,
define the weight |Et| to be the number of nonidentity terms
in Et and define |E| =

∑
t |Et|.

Definition 7. A subcircuit V is fault-tolerant if for any
error pattern E either VE = 0 or there exists a Pauli op-
erator E′ on the input qubits such that VE = V E′ and
|E′| ≤ |E|.

This is related to the conventional notion of fault-tolerance
as both notions entail non-propagation of errors to equiva-
lent errors of larger weight. Here, we demand that any non-
detected error must be equivalent to an error on the input
of no greater weight. Thus any circuit that handles up to d
input errors will also be able to handle up to d total errors
on the input and the circuit combined, if it is fault-tolerant.

A crucial feature of this definition is its composability
(proved in the full version.)

Lemma 8. If V (1), . . . , V (T ) are fault-tolerant subcircuits
that partition a circuit U = V (T ) · · ·V (1), then U is fault
tolerant as well.

The proof of Theorem 5 consists of carefully showing that
our circuit-to-code mapping preserves the properties of sev-
eral key structures. First, “circuit identities” (e.g. an X on
qubit 4 at time 7 is equivalent to a Z on qubit 6 at time
8 together with a Y on qubit 5 at time 2) are shown to be
equivalent to the gauge group. Next, the original stabilizer
and logical group are mapped to the new stabilizer and logi-
cal group. Here the key challenge is showing that the wrong
elements do not appear in the gauge group. Finally we show
that the new code inherits the distance properties of the orig-
inal code if we build it using a fault-tolerant error-detecting
circuit. Proving distance is usually the nontrivial part of
any code construction, and ours is no exception. The proof
is based on constructing, for any error pattern, an equivalent
set of errors acting only on the inputs of the circuit.

Although fault-tolerance is a difficult property to estab-
lish, our approach allows us to import results from the sig-
nificant literature on fault-tolerant quantum computing and
derive distance bounds from them. Nevertheless, in order to
make our result self-contained, Section 5 describes a general
construction of fault-tolerant measurement gadgets (based
on the DiVincenzo-Shor syndrome measurement scheme [40,
20]) with the performance we need.

5. FAULT-TOLERANT GADGETS
The final piece of our construction is a fault-tolerant gad-

get for measuring a single stabilizer generator. With this we
can construct fault-tolerant circuits for any stabilizer code,
and therefore sparse subsystem codes from any stabilizer
code, completing the proof of Theorem 1.

The requirements for fault-tolerance here are somewhat
different from those in existing fault-tolerant measurement
strategies. Our circuits are restricted to stabilizer circuits,
and cannot make use of classical feedback or post-processing.
On the other hand, the circuits here only need to detect er-
rors rather than correct them. The gadgets we use are hence
a variation on the DiVincenzo-Shor cat-state method [40,
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Figure 2: Example configuration for the fault-
tolerant postselection gadget, for w = 3. The data
block consists of input wires which are postselected
to a +1 eigenstate of X⊗w. The cat block is prepared
to contain a cat state, and the parity block is used
for parity checks on that cat state. Time goes from
right to left.

20], modified to detect instead of correct errors, and to do
so with only Clifford gates (e.g. without majority voting).

The idea behind the gadgets is to prepare a w-qubit cat
state 1√

2
(|0〉⊗w + |1〉⊗w) and perform a CNOT from each

qubit in the cat state to each qubit that we want to measure.
If we then postselect on the cat state remaining unchanged,
this postselects the measured qubits onto the +1 eigenspace
of X⊗w. The initial problem with this strategy is that it
is not fault-tolerant: even though each measured qubit is
involved in only one interaction, it is still possible for errors
to propagate from the cat state into the measured qubits. To
prevent this, we add additional CNOTs from the cat state
into a block of check qubits, which are each initialized and
post-selected onto the |0〉 state. We will see that by building
this pattern of CNOTs from a sufficiently strong expander
graph, the gadget can be made fault-tolerant.

A sketch of this argument is as follows. There are three
blocks of qubits: w data qubits, w cat-state qubits and
w′ = O(w) check qubits. Let (V,E) be a graph with |V | = w
and |E| = w′. We identify each data qubit and each cat-
state qubit with vertices in V , and each check qubit with an
edge in E. Our circuit will perform one parallel CNOT (i.e.
several controlled NOTs all with the same control but dif-
ferent targets) for each v ∈ V . The control of each parallel
CNOT will be the cat-state qubit corresponding to v, and
the targets will be the corresponding data qubit and all the
check qubits that correspond to edges incident on v. An ex-
ample configuration using the complete graph on 3 vertices
is given in Figure 2, with cat state initialization performed
in steps 1-2, parallel CNOTs performed in step 3, and cat
state postselection performed in steps 4-5.



If there are no errors then each check qubit will be the
target of two CNOTs and their post-selections will all pass.
If there are errors on the cat-state qubits that propagate to
the data qubits, then they will also propagate to the check
qubits. Now, if (V,E) is an expander with edge expansion
≥ 1 (i.e. any S ⊂ V with |S| ≤ w/2 has ≥ |S| edges from S
to V \S) then this process must result in more errors on the
check qubits than the cat-state qubits. These in turn will
either cancel a larger number of other errors there or cause
a post-selection to fail. This argument rules out the only
possible way for a small number of errors to be magnified
by the circuit and affect a larger number of qubits; in other
words, the only way for the fault-tolerant condition to fail.
Finally we can satisfy the edge-expansion condition with a
constant-degree explicit graph. Putting these ingredients
together yields the desired fault-tolerant gadget. (Again,
the full details are in the long version of the paper.)

6. SPARSE QUANTUM CODES WITH IM-
PROVED DISTANCE AND RATE

Our Theorem 1 implies that substantially better distance
can be achieved with sparse subsystem codes than has pre-
viously been achieved. The following argument (suggested
to us by Sergey Bravyi) is based on applying Theorem 1 to
concatenated stabilizer codes with good distance.

To apply this argument, we must first have that codes
with good distance exist. This is guaranteed by the quantum
Gilbert-Varshamov bound, one version of which states that
if
∑d−1
j=0

(
n
j

)
3j ≤ 2n−k then an [n, k, d] quantum stabilizer

code exists [16]. We need only the fact that there exist
[n0, 1, d0] codes with d0 = Ω(n0). In general the generators
will have high weight, but of course this weight cannot be
higher than n0.

Next we concatenate this code with itself m times. This
starts with one qubit, encodes it into n0 qubits, encodes
each of those into n0 qubits, and so on a total of m times,
ending with nm0 qubits. The resulting distance is easily seen
to be dm0 . The stabilizer generators come from each level of
concatenation; at the lowest level there are nm0 generators
with weight ≤ n0; at the next, there are nm−1

0 generators
with weight ≤ n2

0; and so on. The total weight is ≤ mnm+1
0 .

Choosing m optimally and applying Theorem 1 then yields
Theorem 2. Details are in the long version.

7. MAKING SPARSE CODES LOCAL
We can use SWAP gates, identity gates, and some rear-

rangement to embed the circuits from Theorem 1 into D
space-time dimensions so that all gates become spatially lo-
cal. The codes constructed in this way are not just sparse,
but also geometrically local. This results in nearly optimal
distances of Ω

(
n1−1/D−o(1)) [11], as well as spatially local

codes that achieve kd2/(D−1) ≥ Ω(n) in D = 4 dimensions.
The key ingredient here is to perform the fault-tolerant

error-detection in a way that optimizes not only the number
of gates but also the depth, while respecting spatial locality.
This is achieved by making use of the recursive structure of
concatenated codes. We still need to use a small number of
permutation circuits, for which efficient constructions have
been known for several decades [44]. The basic principle
here is the same one used to embed a generic computation
into D spatial dimensions. Again the details are in the long
version.

8. DISCUSSION
The construction presented here leaves numerous open

questions.
We have not addressed the important issue of efficient

decoders for these codes. It seems likely that the subsys-
tem code can be decoded efficiently if the base code can,
but we have not yet checked this in detail and leave this
to future work. One potential stumbling block is that the
subsystem code requires measuring gauge generators which
must be multiplied together to extract syndrome bits. Since
the stabilizers for our subsystem codes are in general highly
nonlocal and products of many gauge generators, this might
lead to difficulties in achieving a fault-tolerant decoder in
the realistic case of noisy measurements.

Another open question is whether the distance scaling of
Theorems 2 and 3 can be extended to apply also to k to some
degree. Improving the fault-tolerant gadgets or using spe-
cially designed base codes seem like obvious avenues to try
to improve on our codes. Conversely, extending the existing
upper bounds by Bravyi [7] to D > 2, as well as extending
the bound from Bravyi, Poulin, and Terhal [10] to subsys-
tem codes would be also be interesting. We conjecture that
Eq. (1) extends to subsystem codes, and that the scaling
in(2) is tight.

It would be interesting to see if the base codes for our
construction could be extended to include subsystem codes.
This would open up the possibility to bootstrap this con-
struction into multiple layers of concatenation.

It is still an open question whether any distance greater
than O(

√
n logn) can be achieved for stabilizer codes with

constant-weight generators. If an upper bound on the dis-
tance for such stabilizer codes were known, then it could
imply an asymptotic separation between the best distance
possible with stabilizer and subsystem codes with constant-
weight generators, like the separation for spatially local codes
in D = 2 dimensions [7].

Another open question is whether the recent methods of
Gottesman [24] for using sparse codes in fault-tolerant quan-
tum computing (FTQC) schemes can be modified to work
with subsystem codes. If they could, then improving our
scaling with k would imply that FTQC is possible against
adversarial noise at rate R = exp(−c

√
logn).

We conjecture pessimistic answers to both questions, i.e.,
sparse stabilizer codes cannot achieve distance aboveO(

√
n logn)

and FTQC is impossible against rate-R adversarial noise.
Nevertheless, subsystem codes have in the past proven use-
ful for FTQC [1] and we are hopeful that our codes might
assist in further developments of FTQC techniques.

Finally, we cannot resist the temptation to speculate on
the ramifications of these codes for self-correcting quantum
memories. The local versions of our codes in 3D have no
string-like logical operators. To take advantage of this for
self-correction, we need a local Hamiltonian that has the
code space as the (at least quasi-) degenerate ground space
and a favorable spectrum. The underlying code should also
have a threshold against random errors [36]. The obvious
choice of Hamiltonian is minus the sum of the gauge gener-
ators, but this will not be gapped in general. Indeed, the
simplest example of a Clifford circuit – a wire of identity
gates – maps directly onto the quantum XY model, which
is gapless when the coupling strengths are equal [32], but
somewhat encouragingly is otherwise gapped and maps onto
Kitaev’s proposal for a quantum wire [27]. Other models of



subsystem code Hamiltonians exist; some are gapped [13,
8, 12] and some are not [4, 21]. Addressing the lack of a
satisfying general theory of gauge Hamiltonians is perhaps
a natural first step in trying to understand the power of our
construction in the quest for a self-correcting memory.
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