28 research outputs found

    Chemical and structural changes of pretreated empty fruit bunch (EFB) in ionic liquid-cellulase compatible system for fermentability to bioethanol

    Get PDF
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process

    Assessment of reliability of extreme wave height prediction models

    No full text
    Extreme waves influence coastal engineering activities and have an immense geophysical implication. Therefore, their study, observation and extreme wave prediction are decisive for planning of mitigation measures against natural coastal hazards, ship routing, design of coastal and offshore structures. In this study, the estimates of design wave heights associated with return period of 30 and 100 years are dealt with in detail. The design wave height is estimated based on four different models to obtain a general and reliable model. Different locations are considered to perform the analysis: four sites in Indian waters (two each in Bay of Bengal and the Arabian Sea), one in the Mediterranean Sea and two in North America (one each in North Pacific Ocean and the Gulf of Maine). For the Indian water domain, European Centre for Medium-Range Weather Forecasts (ECMWF) global atmospheric reanalysis ERA-Interim wave hindcast data covering a period of 36 years have been utilized for this purpose. For the locations in Mediterranean Sea and North America, both ERA-Interim wave hindcast and buoy data are considered. The reasons for the variation in return value estimates of the ERA-Interim data and the buoy data using different estimation models are assessed in detail
    corecore