91 research outputs found

    The Grizzly, February 8, 1985

    Get PDF
    Ursinus Grading System a Problem? • Former DA Lectures on Alcohol • Library Abuse Called Academic Dishonesty • Suspected Conspiracy Makes Zack\u27s Rest Uneasy • The Wismer Food Groups • CP & P Urges Students to Investigate Intern Options • Campus Life Considers Problems With Proposed Co-ed Dorms • Intramural Program Expands • Faculty Member Exhibits Art Work in Myrin • Heads Bring Magic to The Movies • Model U.N. • Scholarship Announced • Women Cagers Defeat Swarthmore • Grapplers Drop Two, Win One • Pharmacy Stops B-ball Streak • Badminton Beats Harcum, Loses to Rosemont • Fond Memories of The Bull • Lorelei Tonight • Lantern Offers Prize for Best Poem • Blockson to Speakhttps://digitalcommons.ursinus.edu/grizzlynews/1132/thumbnail.jp

    Effects of new polymorphisms in the bovine myocyte enhancer factor 2D (MEF2D) gene on the expression rates of the longissimus dorsi muscle

    Get PDF
    Myocyte enhancer factor 2D (MEF2D), a product of the MEF2D gene, belongs to the myocyte enhancer factor 2 (MEF2) protein family which is involved in vertebrate skeletal muscle development and differentiation during myogenesis. The aim of the present study was to search for polymorphisms in the bovine MEF2D gene and to analyze their effect on MEF2D mRNA and on protein expression levels in the longissimus dorsi muscle of Polish Holstein–Friesian cattle. Overall, three novel variations, namely, insertion/deletion g.−818_−814AGCCG and g.−211C<A transversion in the promoter region as well as g.7C<T transition in the 5′untranslated region (5′UTR), were identified by DNA sequencing. A total, 375 unrelated bulls belonging to six different cattle breeds were genotyped, and three combined genotypes (Ins-C-C/Ins-C-C, Del-A-T/Del-A-T and Ins-C-C/Del-A-T) were determined. The frequency of the combined genotype Ins-C-C/Ins-C-C and Del-A-T/Del-A-T was varied between the breeds and the average frequency was 0.521 and 0.037, respectively. Expression analysis showed that the MEF2D variants were highly correlated with MEF2D mRNA and protein levels in the longissimus dorsi muscle of Polish Holstein–Friesian bulls carrying the three different combined genotypes. The highest MEF2D mRNA and protein levels were estimated in the muscle of bulls with the Ins-C-C/Ins-C-C homozygous genotype as compared to the Del-A-T/Del-A-T homozygotes (P < 0.01) and Ins-C-C/Del-A-T heterozygotes (P < 0.05). A preliminary association study showed no significant differences in the carcass quality traits between bulls with various MEF2D combined genotypes in the investigated population of Polish Holstein–Friesian cattle

    The role of rewards and demands in burnout among surgical nurses

    Get PDF
    Job rewards have both, an intrinsic and an extrinsic motivational potential, and lead to employees’ development as well as help them to achieve work goals. Rewards can balance job demands and protect from burnout. Due to changes on the labour market, new studies are needed. The aim of our study was to examine the role of demands and individual rewards (and their absence) in burnout among surgical nurses. Materials and Methods: The study was conducted in 2009 and 2010 with 263 nurses who worked in surgical wards and clinics in hospitals in Southern Poland. The hypotheses were tested by the use of measures of demands and rewards (Effort-Reward Imbalance Questionnaire by Siegrist) and burnout syndrome (Maslach Burnout Inventory). A cross-sectional, correlational study design was applied. Results: Nurses experienced the largest deficiencies in salary and prestige. Exhaustion was explained by stronger demands and lack of respect (large effect). Depersonalization was explained by stronger demands, lack of respect and greater job security (medium effect). Reduced personal achievement was explained by more demands and greater job security (small effect). Conclusions: Excessive demands and lack of esteem are key reasons for burnout among surgical nurses. Job security can increase burnout when too many resources are invested and career opportunities do not appear. These results may help to improve human resource management in the healthcare sector

    Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy

    Get PDF
    AIMS/HYPOTHESIS: Upregulation of the functional beta cell mass is required to match the physiological demands of mother and fetus during pregnancy. This increase is dependent on placental lactogens (PLs) and prolactin receptors, but the mechanisms underlying these events are only partially understood. We studied the mRNA expression profile of mouse islets during pregnancy to gain a better insight into these changes. METHODS: RNA expression was measured ex vivo via microarrays and quantitative RT-PCR. In vivo observations were extended by in vitro models in which ovine PL was added to cultured mouse islets and MIN6 cells. RESULTS: mRNA encoding both isoforms of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase (TPH), i.e. Tph1 and Tph2, were strongly induced (fold change 25- to 200-fold) during pregnancy. This induction was mimicked by exposing islets or MIN6 cells to ovine PLs for 24 h and was dependent on janus kinase 2 and signal transducer and activator of transcription 5. Parallel to Tph1 mRNA and protein induction, islet serotonin content increased to a peak level that was 200-fold higher than basal. Interestingly, only a subpopulation of the beta cells was serotonin-positive in vitro and in vivo. The stored serotonin pool in pregnant islets and PL-treated MIN6 cells was rapidly released (turnover once every 2 h). CONCLUSIONS/INTERPRETATION: A very strong lactogen-dependent upregulation of serotonin biosynthesis occurs in a subpopulation of mouse islet beta cells during pregnancy. Since the newly formed serotonin is rapidly released, this lactogen-induced beta cell function may serve local or endocrine tasks, the nature of which remains to be identified

    Effects of Acute Tryptophan Depletion on Brain Serotonin Function and Concentrations of Dopamine and Norepinephrine in C57BL/6J and BALB/cJ Mice

    Get PDF
    Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP−) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain- specific effect of ATD Moja-De on anxiety-like behavior
    corecore