817 research outputs found

    Mutual Unbiasedness in Coarse-grained Continuous Variables

    Full text link
    The notion of mutual unbiasedness for coarse-grained measurements of quantum continuous variable systems is considered. It is shown that while the procedure of "standard" coarse graining breaks the mutual unbiasedness between conjugate variables, this desired feature can be theoretically established and experimentally observed in periodic coarse graining. We illustrate our results in an optics experiment implementing Fraunhofer diffraction through a periodic diffraction grating, finding excellent agreement with the derived theory. Our results are an important step in developing a formal connection between discrete and continuous variable quantum mechanics.Comment: 5 pages, 3 figures + Supplemental Material (1 page) v2: Introduction expanded, minor typos correcte

    The Space Object Ontology

    Get PDF
    Achieving space domain awareness requires the identification, characterization, and tracking of space objects. Storing and leveraging associated space object data for purposes such as hostile threat assessment, object identification, and collision prediction and avoidance present further challenges. Space objects are characterized according to a variety of parameters including their identifiers, design specifications, components, subsystems, capabilities, vulnerabilities, origins, missions, orbital elements, patterns of life, processes, operational statuses, and associated persons, organizations, or nations. The Space Object Ontology provides a consensus-based realist framework for formulating such characterizations in a computable fashion. Space object data are aligned with classes and relations in the Space Object Ontology and stored in a dynamically updated Resource Description Framework triple store, which can be queried to support space domain awareness and the needs of spacecraft operators. This paper presents the core of the Space Object Ontology, discusses its advantages over other approaches to space object classification, and demonstrates its ability to combine diverse sets of data from multiple sources within an expandable framework. Finally, we show how the ontology provides benefits for enhancing and maintaining longterm space domain awareness

    Coherent population oscillations with nitrogen-vacancy color centers in diamond

    Full text link
    We present results of our research on two-field (two-frequency) microwave spectroscopy in nitrogen-vacancy (NV-) color centers in a diamond. Both fields are tuned to transitions between the spin sublevels of the NV- ensemble in the 3A2 ground state (one field has a fixed frequency while the second one is scanned). Particular attention is focused on the case where two microwaves fields drive the same transition between two NV- ground state sublevels (ms=0 -> ms=+1). In this case, the observed spectra exhibit a complex narrow structure composed of three Lorentzian resonances positioned at the pump-field frequency. The resonance widths and amplitudes depend on the lifetimes of the levels involved in the transition. We attribute the spectra to coherent population oscillations induced by the two nearly degenerate microwave fields, which we have also observed in real time. The observations agree well with a theoretical model and can be useful for investigation of the NV relaxation mechanisms.Comment: 17 page

    Four Decades of Mizar

    Get PDF

    Testing for entanglement with periodic coarse-graining

    Get PDF
    Continuous variables systems find valuable applications in quantum information processing. To deal with an infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to experimentally demonstrate novel entanglement criteria based on a periodic structure of coarse-grained measurements. The periodization of the measurements allows for an efficient evaluation of entanglement using spatial masks acting as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility of the derived criteria with a success rate in entanglement detection of 60%\sim60\% relative to 73447344 studied cases.Comment: V1: revtex4, 10 pages, 4 figures + supp. material (4 pages, 1 figure) V2: Substantial revisions implemented both in theory and experimental data analysi

    Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond

    Full text link
    Negatively-charged nitrogen-vacancy (NV^-) centers in diamond have generated much recent interest for their use in sensing. The sensitivity improves when the NV ground-state microwave transitions are narrow, but these transitions suffer from inhomogeneous broadening, especially in high-density NV ensembles. To better understand and remove the sources of broadening, we demonstrate room-temperature spectral "hole burning" of the NV ground-state transitions. We find that hole burning removes the broadening caused by magnetic fields from 13^{13}C nuclei and demonstrate that it can be used for magnetic-field-insensitive thermometry.Comment: Main text: 5 pages, 4 figures. Supplement: 6 pages, 3 figure
    corecore