504 research outputs found

    Genetic determination of exocrine pancreatic function in cystic fibrosis

    Get PDF
    We showed elsewhere that the pancreatic function status of cystic fibrosis (CF) patients could be correlated to mutations in the CF transmembrane conductance regulator (CFTR) gene. Although the majority of CF mutations- including the most common, ΔF508-strongly correlated with pancreatic insufficiency (PI), approximately 10% of the mutant alleles may confer pancreatic sufficiency (PS). To extend this observation, genomic DNA of 538 CF patients with well-documented pancreatic function status were analyzed for a series of known mutations in their CFTR genes. Only 20 of the 25 mutations tested were found in this population. They accounted for 84% of the CF chromosomes, with ΔF508 being the most frequent (71%), and the other mutations accounted for less than 5% each. A total of 30 different, complete genotypes could be determined in 394 (73%) of the patients. The data showed that each genotype was associated only with PI or only with PS, but not with both. This result is thus consistent with the hypothesis that PI and PS in CF are predisposed by the genotype at the CFTR locus; the PS phenotype occurs in patients who have one or two mild CFTR mutations, such as R117H, R334W, R347P, A455E, and P574H, whereas the PI phenotype occurs in patients with two severe alleles, such as ΔF508, ΔI507, Q493X, G542X, R553X, W1282X, 621 + 1G→T, 1717-1G→A, 556delA, 3659delC, I148T, G480C, V520F, G551D, and R560T.published_or_final_versio

    The effect of the pro-inflammatory cytokine tumor necrosis factor-alpha on human joint capsule myofibroblasts

    Get PDF
    Introduction: Previous studies have shown that the number of myoblastically differentiated fibroblasts known as myofibroblasts (MFs) is significantly increased in stiff joint capsules, indicating their crucial role in the pathogenesis of post-traumatic joint stiffness. Although the mode of MFs' function has been well defined for different diseases associated with tissue fibrosis, the underlying mechanisms of their regulation in the pathogenesis of post-traumatic joint capsule contracture are largely unknown. Methods: In this study, we examined the impact of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) on cellular functions of human joint capsule MFs. MFs were challenged with different concentrations of TNF-alpha with or without both its specifically inactivating antibody infliximab (IFX) and cyclooxygenase-2 (COX2) inhibitor diclofenac. Cell proliferation, gene expression of both alpha-smooth muscle actin (alpha-SMA) and collagen type I, the synthesis of prostaglandin derivates E(2), F(1A), and F(2A), as well as the ability to contract the extracellular matrix were assayed in monolayers and in a three-dimensional collagen gel contraction model. The a-SMA and COX2 protein expressions were evaluated by immunofluorescence staining and Western blot analysis. Results: The results indicate that TNF-alpha promotes cell viability and proliferation of MFs, but significantly inhibits the contraction of the extracellular matrix in a dose-dependent manner. This effect was associated with downregulation of a-SMA and collagen type I by TNF-alpha application. Furthermore, we found a significant time-dependent upregulation of prostaglandin E(2) synthesis upon TNF-alpha treatment. The effect of TNF-alpha on COX2-positive MFs could be specifically prevented by IFX and partially reduced by the COX2 inhibitor diclofenac. Conclusions: Our results provide evidence that TNF-alpha specifically modulates the function of MFs through regulation of prostaglandin E(2) synthesis and therefore may play a crucial role in the pathogenesis of joint capsule contractures

    Characterization of the Ac/Ds behaviour in transgenic tomato plants using plasmid rescue

    Get PDF
    We describe the use of plasmid rescue to facilitate studies on the behaviour of Ds and Ac elements in transgenic tomato plants. The rescue of Ds elements relies on the presence of a plasmid origin of replication and a marker gene selective in Escherichia coli within the element. The position within the genome of modified Ds elements, rescued both before and after transposition, is assigned to the RFLP map of tomato. Alternatively to the rescue of Ds elements equipped with plasmid sequences, Ac elements are rescued by virtue of plasmid sequences flanking the element. In this way, the consequences of the presence of an (active) Ac element on the DNA structure at the original site can be studied in detail. Analysis of a library of Ac elements, rescued from the genome of a primary transformant, shows that Ac elements are, infrequently, involved in the formation of deletions. In one case the deletion refers to a 174 bp genomic DNA sequence immediately flanking Ac. In another case, a 1878 bp internal Ac sequence is deleted

    A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants

    Get PDF
    Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the β-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.

    The relation between genotype and phenotype in cystic fibrosis - Analysis of the most common mutation (ΔF 508)

    Get PDF
    Background and methods. Both the clinical manifestations of cystic fibrosis and the genotypes of patients are heterogeneous but the associations between the two are not known. We therefore studied blood samples from 293 patients with cystic fibrosis for the presence of the most common disease-causing mutation (ΔF 508) on chromosome 7 and compared the results with the clinical manifestations of the disease. Results. The prevalence of the ΔF 508 allele in the cohort was 71 percent; 52 percent of the patients were homozygous for the mutation, 40 percent were heterozygous, and 8 percent had other, undefined mutations. The patients who were homozygous for the mutation had received a diagnosis of cystic fibrosis at an earlier age and had a greater frequency of pancreatic insufficiency; pancreatic insufficiency was present in 99 percent of the homozygous patients, but in 72 percent of the heterozygous patients and only 36 percent of the patients with other genotypes. The patients with pancreatic insufficiency in all three genotype groups had similar clinical characteristics, reflected by an early age at diagnosis, similar sweat chloride values at diagnosis, similar severity of pulmonary disease, and similar percentiles for weight. In contrast, the patients in the heterozygous-genotype and other-genotype groups who did not have pancreatic insufficiency were older and had milder disease. They had lower sweat chloride value at diagnosis, normal nutritional status, and better pulmonary function after adjustment for age. Conclusions. The variable clinical course in patients with cystic fibrosis can be attributed at least in part to specific genotypes at the locus of the cystic fibrosis gene.published_or_final_versio

    The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation

    Get PDF
    The bacteria Pseudomonas syringae is a pathogen of many crop species and one of the model pathogens for studying plant and bacterial arms race coevolution. In the current model, plants perceive bacteria pathogens via plasma membrane receptors, and recognition leads to the activation of general defenses. In turn, bacteria inject proteins called effectors into the plant cell to prevent the activation of immune responses. AvrPto and AvrPtoB are two such proteins that inhibit multiple plant kinases. The tomato plant has reacted to these effectors by the evolution of a cytoplasmic resistance complex. This complex is compromised of two proteins, Prf and Pto kinase, and is capable of recognizing the effector proteins. How the Pto kinase is able to avoid inhibition by the effector proteins is currently unknown. Our data shows how the tomato plant utilizes dimerization of resistance proteins to gain advantage over the faster evolving bacterial pathogen. Here we illustrate that oligomerisation of Prf brings into proximity two Pto kinases allowing them to avoid inhibition by the effectors by transphosphorylation and to activate immune responses

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Implementation of a standardized protocol to manage elderly patients with low energy pelvic fractures: can service improvement be expected?

    Get PDF
    Purpose: The incidence of low energy pelvic fractures (FPFs) in the elderly is increasing. Comorbidities, decreased bone-quality, problematic fracture fixation and poor compliance represent some of their specific difficulties. In the absence of uniform management, a standard operating procedure (SOP) was introduced to our unit, aiming to improve the quality of services provided to these patients. Methods: A cohort study was contacted to test the impact of (1) using a specific clinical algorithm and (2) using different antiosteoporotic drugs. Multivariate regression analysis was used to determine prognostic factors. Study endpoints were the time-to-healing, length-of-stay, return to pre-injury mobility, union status, mortality and complications. Results: A total of 132 elderly patients (≥65 years) admitted during the period 2012–2014 with FPFs were enrolled. High-energy fractures, acetabular fractures, associated trauma affecting mobility, pathological pelvic lesions and operated FPFs were used as exclusion criteria. The majority of included patients were females (108/132; 81.8%), and the mean age was 85.8 years (range 67–108). Use of antiosteoporotics was associated with a shorter time of healing (p = 0.036). Patients treated according to the algorithm showed a significant protection against malunion (p < 0.001). Also, adherence to the algorithm allowed more patients to return to their pre-injury mobility status (p = 0.039). Conclusions: The use of antiosteoporotic medication in elderly patients with fragility pelvic fractures was associated with faster healing, whilst the adherence to a structured clinical pathway led to less malunions and non-unions and return to pre-injury mobility state

    Cisgenesis and intragenesis as new strategies for crop improvement

    Get PDF
    Cisgenesis and intragenesis are emerging plant breeding technologies which offer great promise for future acceptance of genetically engineered crops. The techniques employ traditional genetic engineering methods but are confined to transferring of genes and genetic elements between sexually compatible species that can breed naturally. One of the main requirements is the absence of selectable marker genes (such as antibiotic resistance genes) in the genome. Hence the sensitive issues with regard to transfer of foreign genes and antibiotic resistance are overcome. It is a targeted technique involving specific locus; therefore, linkage drag that prolongs the time for crop improvement in traditional breeding does not occur. It has great potential for crop improvement using superior alleles that exist in the untapped germplasm or wild species. Cisgenic and intragenic plants may not face the same stringent regulatory assessment for field release as transgenic plants which is a clear added advantage that would save time. In this chapter, the concepts of cis/intragenesis and the prerequisites for the development of cis/intragenesis plants are elaborated. Strategies for marker gene removal after selection of transformants are discussed based on the few recent reports from various plant species
    corecore