544 research outputs found

    The cumulative carbon budget and its implications

    Get PDF
    The cumulative impact of carbon dioxide (CO2) emissions on climate has potentially profound economic and policy implications. It implies that the long-term climate change mitigation challenge should be reframed as a stock problem, while the overwhelming majority of climate policies continue to focus on the flow of CO2 into the atmosphere in 2030 or 2050. An obstacle, however, to the use of a cumulative carbon budget in policy is uncertainty in the size of this budget consistent with any specific temperature-based goal such as limiting warming to 2°C. This arises from uncertainty in the climate response to CO2 emissions, which is relatively tractable, and uncertainty in future warming due to non-CO2 drivers, which is less so. We argue these uncertainties are best addressed through policies that recognize the need to reduce net global CO2 emissions to zero to stabilize global temperatures but adapt automatically to evolving climate change. Adaptive policies would fit well within the Paris Agreement under the UN Framework Convention on Climate Change

    Global mean temperature indicators linked to warming levels avoiding climate risks

    Get PDF
    International climate policy uses global mean temperature rise limits as proxies for societally acceptable levels of climate change. These limits are informed by risk assessments which draw upon projections of climate impacts under various levels of warming. Here we illustrate that indicators used to define limits of warming and those used to track the evolution of the Earth System under climate change are not directly comparable. Depending on the methodological approach, differences can be time-variant and up to 0.2??C for a warming of 1.5??C above pre-industrial levels. This might lead to carbon budget overestimates of about 10 years of continued year-2015 emissions, and about a 10% increase in estimated 2100 sea-level rise. Awareness of this definitional mismatch is needed for a more effective communication between scientists and decision makers, as well as between the impact and physical climate science communities

    Estimated climate impact of replacing agriculture as the primary food production system

    Get PDF
    Global agriculture is the second largest contributor to anthropogenic climate change after the burning of fossil fuels. However the potential to mitigate the agricultural climate change contribution is limited and must account for the imperative to supply food for the global population. Advances in microbial biomass cultivation technology have recently opened a pathway to growing substantial amounts of food for humans or livestock on a small fraction of the land presently used for agriculture. Here we investigate the potential climate change impacts of the end of agriculture as the primary human food production system. We find that replacing agricultural primary production with electrically powered microbial primary production before a low-carbon energy transition has been completed could redirect renewable energy away from replacing fossil fuels, potentially leading to higher total CO2 emissions. If deployed after a transition to renewable energy, the technology could alleviate agriculturally driven climate change. These diverging pathways originate from the reversibility of agricultural driven global warming and the irreversibility of fossil-fuel CO2 driven warming. The range of reduced warming from the replacement of agriculture ranges from −0.22 (−0.29 to −0.04) ∘C for shared socioeconomic pathway (SSP)1 −1.9 to −0.85 (−0.99 to −0.39) ∘C for SSP4-6.0. For limited temperature target overshoot scenarios, replacement of agriculture could eliminate or reduce the need for active atmospheric CO2 removal to achieve the necessary peak and decline in globa

    Inclusive climate change mitigation and food security policy under 1.5°C climate goal

    Get PDF
    Climate change mitigation to limit warming to 1.5°C or well below 2°C, as suggested by the Paris Agreement, can rely on large-scale deployment of land-related measures (e.g., afforestation, or bioenergy production). This can increase food prices, and hence raises food security concerns. Here we show how an inclusive policy design can avoid these adverse side-effects. Food-security support through international aid, bioenergy tax, or domestic reallocation of income can shield impoverished and vulnerable people from the additional risk of hunger that would be caused by the economic effects of policies narrowly focussing on climate objectives only. In absence of such support, 35% more people might be at risk of hunger by 2050 (i.e. 84 million additional people) in a 2°C-consistent scenario. The additional global welfare changes due to inclusive climate policies are small (<0.1%) compared to the total climate mitigation cost (3.7% welfare loss), and the financial costs of international aid amount to about half a percent of high-income countries' GDP. This implies that climate policy should treat this issue carefully. Although there are challenges to implement food policies, options exist to avoid the food security concerns often linked to climate mitigation

    Geosciences after Paris

    Get PDF
    The adoption of the Paris Agreement is a historic milestone for the global response to the threat of climate change. Scientists are now being challenged to investigate a 1.5 degrees C world - which will require an accelerated effort from the geoscience community

    Health professionals' knowledge of probiotics : an international survey

    Get PDF
    The objective of this study was to survey health professionals to investigate their knowledge of probiotics. An online survey was conducted to gather data on the knowledge of health professionals. The online survey was distributed via email and social media platforms using snowball sampling. A total of 1066 health professionals (859; 80.6% female) from 30 countries responded to the survey. Most of the respondents evaluated their knowledge of probiotics as medium (36.4%) or good (36.2%). Only 8.9% of the respondents rated it as excellent. No statistical difference in knowledge was found between male and female health professionals. Over 80% of pharmacists, allied health professionals, medical doctors and dentists, and other health professionals knew the correct definition of probiotics as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host”, whereas three quarters of registered nurses and midwives and less than two thirds of psychologists identified the correct definition. Statistically, more female than male health professionals knew the correct definition of probiotics. The most frequently recognized species of bacteria containing probiotic strains were Lactobacillus acidophilus (92%), Bifidobacterium bifidum (82%), and Lactobacillus rhamnosus (62%). The opinions on when it is best to take probiotics were different (χ2 = 28.375; p < 0.001), with 90.2% of respondents identifying that probiotics have beneficial effects if taken during antibiotic therapy, 83.5% for diarrhea, 70.6% for constipation, 63.3% before traveling abroad, and 60.4% for treating allergies. Almost 79% of health professionals involved in this study have advised their patients to use probiotics and 57.5% of the respondents wanted to learn more about probiotics. All things considered, health professionals have a medium level of knowledge of probiotics, which could be improved by the implementation of targeted learning programs. As probiotics have many beneficial effects in a wide range of health areas, health professionals need to adopt the use of probiotics in clinical practice

    A Human Development Framework for CO2 Reductions

    Get PDF
    Although developing countries are called to participate in CO2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300Gt of cumulative CO2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20% to 30% of previously calculated CO2 budgets limiting global warming to 2{\deg}C. These constraints and results are incorporated into a CO2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2{\deg}C target after a particular development threshold is reached. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100Gt of CO2. These values are within the uncertainty range of emissions to limit global temperatures to 2{\deg}C.Comment: 14 pages, 7 figures, 1 tabl

    Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are relentlessly progressive neurodegenerative disorders with overlapping clinical, genetic and pathological features. Cytoplasmic inclusions of fused in sarcoma (FUS) are the hallmark of several forms of FTLD and ALS patients with mutations in the FUS gene. FUS is a multifunctional, predominantly nuclear, DNA and RNA binding protein. Here, we report that transgenic mice overexpressing wild-type human FUS develop an aggressive phenotype with an early onset tremor followed by progressive hind limb paralysis and death by 12 weeks in homozygous animals. Large motor neurons were lost from the spinal cord accompanied by neurophysiological evidence of denervation and focal muscle atrophy. Surviving motor neurons in the spinal cord had greatly increased cytoplasmic expression of FUS, with globular and skein-like FUS-positive and ubiquitin-negative inclusions associated with astroglial and microglial reactivity. Cytoplasmic FUS inclusions were also detected in the brain of transgenic mice without apparent neuronal loss and little astroglial or microglial activation. Hemizygous FUS overexpressing mice showed no evidence of a motor phenotype or pathology. These findings recapitulate several pathological features seen in human ALS and FTLD patients, and suggest that overexpression of wild-type FUS in vulnerable neurons may be one of the root causes of disease. Furthermore, these mice will provide a new model to study disease mechanism, and test therapies

    Demand-side approaches for limiting global warming to 1.5 °C

    Get PDF
    The Paris Climate Agreement defined an ambition of limiting global warming to 1.5 °C above preindustrial levels. This has triggered research on stringent emission reduction targets and corresponding mitigation pathways across energy economy and societal systems. Driven by methodological considerations, supply side and carbon dioxide removal options feature prominently in the emerging pathway literature, while much less attention has been given to the role of demand-side approaches. This special issue addresses this gap, and aims to broaden and strengthen the knowledge base in this key research and policy area. This editorial paper synthesizes the special issue’s contributions horizontally through three shared themes we identify: policy interventions, demand-side measures, and methodological approaches. The review of articles is supplemented by insights from other relevant literature. Overall, our paper underlines that stringent demand-side policy portfolios are required to drive the pace and direction of deep decarbonization pathways and keep the 1.5 °C target within reach. It confirms that insufficient attention has been paid to demand-side measures, which are found to be inextricably linked to supply-side decarbonization and able to complement supply-side measures. The paper also shows that there is an abundance of demand-side measures to limit warming to 1.5 °C, but it warns that not all of these options are “seen” or captured by current quantitative tools or progress indicators, and some remain insufficiently represented in the current policy discourse. Based on the set of papers presented in the special issue, we conclude that demand-side mitigation in line with the 1.5 °C goal is possible; however, it remains enormously challenging and dependent on both innovative technologies and policies, and behavioral change. Limiting warming to 1.5 °C requires, more than ever, a plurality of methods and integrated behavioral and technology approaches to better support policymaking and resulting policy interventions
    corecore