42 research outputs found

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals

    Neural field model for measuring and reproducing time intervals

    Get PDF
    The continuous real-time motor interaction with our environment requires the capacity to measure and produce time intervals in a highly flexible manner. Recent neurophysiological evidence suggests that the neural computational principles supporting this capacity may be understood from a dynamical systems perspective: Inputs and initial conditions determine how a recurrent neural network evolves from a “resting state” to a state triggering the action. Here we test this hypothesis in a time measurement and time reproduction experiment using a model of a robust neural integrator based on the theoretical framework of dynamic neural fields. During measurement, the temporal accumulation of input leads to the evolution of a self-stabilized bump whose amplitude reflects elapsed time. During production, the stored information is used to reproduce on a trial-by-trial basis the time interval either by adjusting input strength or initial condition of the integrator. We discuss the impact of the results on our goal to endow autonomous robots with a human-like temporal cognition capacity for natural human-robot interactions.The work received financial support from FCT through the PhD fellowship PD/BD/128183/2016, the project ”Neurofield” (POCI-01-0145-FEDER-031393) and the research centre CMAT within the project UID/MAT/00013/2013

    Oribatid communities and heavy metal bioaccumulation in selected species associated with lichens in a heavily contaminated habitat

    Get PDF
    The study examines oribatid communities and heavy metal bioaccumulation in selected species associated with different microhabitats of a post-smelting dump, i.e. three lichen species of Cladonia with various growth forms and the slag substrate. The abundance of oribatids collected from the substrate was significantly lower than observed in lichen thalli. The morphology and chemical properties of lichens, and to some extent varying concentrations of heavy metals in thalli, are probably responsible for significant differences in oribatid communities inhabiting different Cladonia species. Some oribatids demonstrate the ability to accumulate zinc and cadmium with unusual efficiency, whereas lead is the most effectively regulated element by all species. A positive correlation was found between Zn content in all studied oribatids and their microhabitats. Oribatids exploring different food resources, i.e. fungivorous and non-fungivorous grazers, show considerable differences in bioconcentrations of certain elements

    A biologically plausible model of time-scale invariant interval timing

    Get PDF
    The temporal durations between events often exert a strong influence over behavior. The details of this influence have been extensively characterized in behavioral experiments in different animal species. A remarkable feature of the data collected in these experiments is that they are often time-scale invariant. This means that response measurements obtained under intervals of different durations coincide when plotted as functions of relative time. Here we describe a biologically plausible model of an interval timing device and show that it is consistent with time-scale invariant behavior over a substantial range of interval durations. The model consists of a set of bistable units that switch from one state to the other at random times. We first use an abstract formulation of the model to derive exact expressions for some key quantities and to demonstrate time-scale invariance for any range of interval durations. We then show how the model could be implemented in the nervous system through a generic and biologically plausible mechanism. In particular, we show that any system that can display noise-driven transitions from one stable state to another can be used to implement the timing device. Our work demonstrates that a biologically plausible model can qualitatively account for a large body of data and thus provides a link between the biology and behavior of interval timing

    Changes of the 2-stroke aerosol in the exhaust sampling system

    No full text
    Nanoparticle emissions of two 2-stroke scooters were investigated along the exhaust- and CVS-system (Constant Volume Sampling) with closed and with open line (cone). Due to their technology, the scooters produce different kind of aerosol (state of oxidation & SOF-content) and in addition to that they were operated with and without oxidation catalyst. The scooters represent a modern technology with direct injection TSDI* ) (two stroke direct injection) and with carburettor. The tests were performed at two constant speeds of the vehicles (20 km/h & 40 km/h) according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network. The nanoparticulate emissions were measured by means of SMPS (CPC) and NanoMet (abbreviations see at the end of this paper). The most important results are: - the changes of the PSD's of the aerosol along the exhaust and CVS-system are connected to the average gas temperature and PC-concentration, which result after the different dilution steps and cooling down in the connecting pipe, - in the "open" variant of exhaust gas extraction there is a dilution step with unfiltered ambient air directly after tailpipe. This causes a stop of agglomeration, reduction of diffusion loses and increased background NPconcentration. There is also lower post oxidation of CO & HC. In some cases spontaneous condensates due to the temperature drop are supposed, - with the "closed" variant there is a stronger reduction of SMPS PC's along the gas way, than with the open variant. This is to explain with the higher temperatures and concentrations in the closed system, which enable more intense thermophoresis - and diffusion losses, - the NP-concentrations measured with "open" variant are always higher, - most intense oxidation is observed with Peugeot Carb: due to the SAS, rich tuning and a relatively high temperature level there are oxidation effects already without catalyst (temp. approx. 350 centigrade). With catalyst the temperature is in the range of 400centigrade and the oxidation is so intense, that the particles are nearly eliminated. The type of sampling: "open", or "closed" as well as the sampling position in the exhaust installation have significant influence on the measured nanoparticles emission results

    Testing emissions of passenger cars in laboratory and on-road (PEMS, RDE)

    No full text
    In the present paper, the results and experiences of testing different PEMS on the chassis dynamometer and on-road are presented. In the first part of work the measuring systems were installed on the same vehicle (Seat Leon 1.4 TSI ST) and the results were compared on the chassis dynamometer in the standard test cycles: NEDC, WLTC and CADC. in the second part of work the nanoparticle emissions of three Diesel cars were measured with PN-PEMS. PN-PEMS showed an excellent correlations with CPC in the tests on chassis dynamometer and it indicated very well the efficiency of DPF in eliminating the nanoparticles in real world driving

    Investigations of emissions of reactive substances NO2 and NH3 from passenger cars

    No full text
    Public concern and complaints regarding ambient air in zones of dense traffic pertains to two compounds of nitrogen, nitrogen dioxide (NO2) and ammonia (NH3); both are toxic and strongly irritant, such that legal limitations are under discussion. This paper contributes to measuring methods as already in part proposed by GRPE subgroup WLTP-DTP (Worldwide Light Duty Test Procedures – Diesel Test Procedures) for NO2. Despite legally lowered NOx emission levels, lumping both, NO2 and NO, levels of NO2 have risen in cities and agglomerations as a result of both, deployed catalytic exhaust after-treatment devices and low sulphur Diesel fuels. In present tests two different combinations of NO2 measuring methods as proposed by WLTP were checked on Diesel cars for practicability in handling and accuracy. These integral, indirect methods (NO2 = NOx – NO) have been found as useful tools for estimate of NO2 and with use of appropriate analyzers a satisfactory accuracy was attained. Furthermore, attention was brought to ammonia (NH3) emitted by gasoline engines with three way catalysts (TWC) which ought not to be ignored while on the other hand SCR systems for Diesel engines are strictly regulated. Emission levels of more recent TWC turned out to be mostly below 20 ppm NH3. Vehicle of older technology exhibited significantly higher levels, about 10 times more. As chemical reactions depend on pressure and temperature (= i.e. flow condition in CVS-tunnel) as well as concentrations, doubts need to be considered on accuracy of results based on chemical reactive substances. Nevertheless, clear tendencies regarding changes of concentrations of NO2 and NH3 along the path-way could not be observed
    corecore