1,253 research outputs found
On the Crystallization of Terbium Aluminium Garnet
Attempts to grow terbium aluminium garnet (Tb3Al5O12, TAG) by the Czochralski
method lead to crystals of millimeter scale. Larger crystals could not be
obtained. DTA measurements within the binary system showed that TAG melts
incongruently at 1840 deg. C. The perovskite (TbAlO3, TAP) with a congruent
melting point of 1930 deg. C is the most stable phase in this system. The
region for primary crystallization of TAP covers the chemical composition of
TAG and suppresses the primary crystallization of the terbium aluminium garnet.Comment: 6 pages, 2 figure
Development of Prototype Pixellated PIN CdZnTe Detectors
We report initial results from the design and evaluation of two pixellated
PIN Cadmium Zinc Telluride detectors and an ASIC-based readout system. The
prototype imaging PIN detectors consist of 4X4 1.5 mm square indium anode
contacts with 0.2 mm spacing and a solid cathode plane on 10X10 mm CdZnTe
substrates of thickness 2 mm and 5 mm. The detector readout system, based on
low noise preamplifier ASICs, allows for parallel readout of all channels upon
cathode trigger. This prototype is under development for use in future
astrophysical hard X-ray imagers with 10-600 keV energy response. Measurements
of the detector uniformity, spatial resolution, and spectral resolution will be
discussed and compared with a similar pixellated MSM detector. Finally, a
prototype design for a large imaging array is outlined.Comment: 10 pages Latex, 9 figures, to appear in Proc. of SPIE Vol. 3446 "Hard
X-ray and Gamma-Ray Detector Physics and Applications
Growth of Oxide Compounds under Dynamic Atmosphere Composition
Commercially available gases contain residual impurities leading to a
background oxygen partial pressure of typically several 10^{-6} bar,
independent of temperature. This oxygen partial pressure is inappropriate for
the growth of some single crystals where the desired oxidation state possesses
a narrow stability field. Equilibrium thermodynamic calculations allow the
determination of dynamic atmosphere compositions yielding such self adjusting
and temperature dependent oxygen partial pressures, that crystals like ZnO,
Ga2O3, or Fe{1-x}O can be grown from the melt.Comment: 4 pages, 3 figures, talk on CGCT-4 Sendai, May 21-24, 200
Transport through open quantum dots: making semiclassics quantitative
We investigate electron transport through clean open quantum dots (quantum
billiards). We present a semiclassical theory that allows to accurately
reproduce quantum transport calculations. Quantitative agreement is reached for
individual energy and magnetic field dependent elements of the scattering
matrix. Two key ingredients are essential: (i) inclusion of pseudo-paths which
have the topology of linked classical paths resulting from diffraction in
addition to classical paths and (ii) a high-level approximation to diffractive
scattering. Within this framework of the pseudo-path semiclassical
approximation (PSCA), typical shortcomings of semiclassical theories such as
violation of the anti-correlation between reflection and transmission and the
overestimation of conductance fluctuations are overcome. Beyond its predictive
capabilities the PSCA provides deeper insights into the quantum-to-classical
crossover.Comment: 20 pages, 19 figure
Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure
We analyze both experimentally (where possible) and theoretically from
first-principles the dielectric tensor components and crystal structure of five
classes of Pbnm perovskites. All of these materials are believed to be stable
on silicon and are therefore promising candidates for high-K dielectrics. We
also analyze the structure of these materials with various simple models,
decompose the lattice contribution to the dielectric tensor into force constant
matrix eigenmode contributions, explore a peculiar correlation between
structural and dielectric anisotropies in these compounds and give phonon
frequencies and infrared activities of those modes that are infrared-active. We
find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising
candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information:
http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or
http://www.physics.rutgers.edu/~sinisa/highk/supp.pd
The LISA pathfinder mission
ISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter.
The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper
State space modelling and data analysis exercises in LISA Pathfinder
LISA Pathfinder is a mission planned by the European Space Agency to test the
key technologies that will allow the detection of gravitational waves in space.
The instrument on-board, the LISA Technology package, will undergo an
exhaustive campaign of calibrations and noise characterisation campaigns in
order to fully describe the noise model. Data analysis plays an important role
in the mission and for that reason the data analysis team has been developing a
toolbox which contains all the functionalities required during operations. In
this contribution we give an overview of recent activities, focusing on the
improvements in the modelling of the instrument and in the data analysis
campaigns performed both with real and simulated data.Comment: Plenary talk presented at the 9th International LISA Symposium, 21-25
May 2012, Pari
A noise simulator for eLISA: migrating LISA pathfinder knowledge to the eLISA mission
We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the performance of the achieved free-fall along the sensitive axis. A preliminary version of the results is presented
In-flight thermal experiments for LISA pathfinder: simulating temperature noise at the inertial sensors
Thermal Diagnostics experiments to be carried out on board LISA Pathfinder (LPF) will yield a detailed characterisation of how temperature fluctuations affect the LTP (LISA Technology Package) instrument performance, a crucial information for future space based gravitational wave detectors as the proposed eLISA. Amongst them, the study of temperature gradient fluctuations around the test masses of the Inertial Sensors will provide as well information regarding the contribution of the Brownian noise, which is expected to limit the LTP sensitivity at frequencies close to 1 mHz during some LTP experiments. In this paper we report on how these kind of Thermal Diagnostics experiments were simulated in the last LPF Simulation Campaign (November, 2013) involving all the LPF Data Analysis team and using an end-to-end simulator of the whole spacecraft. Such simulation campaign was conducted under the framework of the preparation for LPF operations
Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μHz
In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20 μHz. The Letter presents the measured differential acceleration noise figure, which is at (1.74±0.05) fm s^{-2}/sqrt[Hz] above 2 mHz and (6±1)×10 fm s^{-2}/sqrt[Hz] at 20 μHz, and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency
- …
