193 research outputs found

    Matching with shift for one-dimensional Gibbs measures

    Get PDF
    We consider matching with shifts for Gibbsian sequences. We prove that the maximal overlap behaves as clognc\log n, where cc is explicitly identified in terms of the thermodynamic quantities (pressure) of the underlying potential. Our approach is based on the analysis of the first and second moment of the number of overlaps of a given size. We treat both the case of equal sequences (and nonzero shifts) and independent sequences.Comment: Published in at http://dx.doi.org/10.1214/08-AAP588 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A concentration inequality for interval maps with an indifferent fixed point

    Get PDF
    For a map of the unit interval with an indifferent fixed point, we prove an upper bound for the variance of all observables of nn variables K:[0,1]nRK:[0,1]^n\to\R which are componentwise Lipschitz. The proof is based on coupling and decay of correlation properties of the map. We then give various applications of this inequality to the almost-sure central limit theorem, the kernel density estimation, the empirical measure and the periodogram.Comment: 26 pages, submitte

    On the Hydrodynamic Equilibrium of a Rod in a Lattice Fluid

    Full text link
    We model the behavior of a big (Brazil) nut in a medium of smaller nuts with a stochastic asymmetric simple exclusion dynamics of a polymer-monomer lattice system. The polymer or `rod' can move up or down in an external negative field, occupying N horizontal lattice sites where the monomers cannot enter. The monomers (at most one per site) or `fluid particles' are moving symmetrically in the horizontal plane and asymmetrically in the vertical direction, also with a negative field. For a fixed position of the rod, this lattice fluid is in equilibrium with a vertical height profile reversible for the monomers' motion. Upon `shaking' (speeding up the monomers) the motion of the `rod' dynamically decouples from that of the monomers resulting in a reversible random walk for the rod around an average height proportional to log N.Comment: 19 pages, 2 figure

    Limiting shapes for deterministic centrally seeded growth models

    Get PDF
    We study the rotor router model and two deterministic sandpile models. For the rotor router model in Zd\mathbb{Z}^d, Levine and Peres proved that the limiting shape of the growth cluster is a sphere. For the other two models, only bounds in dimension 2 are known. A unified approach for these models with a new parameter hh (the initial number of particles at each site), allows to prove a number of new limiting shape results in any dimension d1d \geq 1. For the rotor router model, the limiting shape is a sphere for all values of hh. For one of the sandpile models, and h=2d2h=2d-2 (the maximal value), the limiting shape is a cube. For both sandpile models, the limiting shape is a sphere in the limit hh \to -\infty. Finally, we prove that the rotor router shape contains a diamond.Comment: 18 pages, 3 figures, some errors corrected and more explanation added, to appear in Journal of Statistical Physic

    Concentration inequalities for random fields via coupling

    Get PDF
    We present a new and simple approach to concentration inequalities for functions around their expectation with respect to non-product measures, i.e., for dependent random variables. Our method is based on coupling ideas and does not use information inequalities. When one has a uniform control on the coupling, this leads to exponential concentration inequalities. When such a uniform control is no more possible, this leads to polynomial or stretched-exponential concentration inequalities. Our abstract results apply to Gibbs random fields, in particular to the low-temperature Ising model which is a concrete example of non-uniformity of the coupling.Comment: New corrected version; 22 pages; 1 figure; New result added: stretched-exponential inequalit

    A probabilistic approach to Zhang's sandpile model

    Get PDF
    The current literature on sandpile models mainly deals with the abelian sandpile model (ASM) and its variants. We treat a less known - but equally interesting - model, namely Zhang's sandpile. This model differs in two aspects from the ASM. First, additions are not discrete, but random amounts with a uniform distribution on an interval [a,b][a,b]. Second, if a site topples - which happens if the amount at that site is larger than a threshold value EcE_c (which is a model parameter), then it divides its entire content in equal amounts among its neighbors. Zhang conjectured that in the infinite volume limit, this model tends to behave like the ASM in the sense that the stationary measure for the system in large volumes tends to be peaked narrowly around a finite set. This belief is supported by simulations, but so far not by analytical investigations. We study the stationary distribution of this model in one dimension, for several values of aa and bb. When there is only one site, exact computations are possible. Our main result concerns the limit as the number of sites tends to infinity, in the one-dimensional case. We find that the stationary distribution, in the case aEc/2a \geq E_c/2, indeed tends to that of the ASM (up to a scaling factor), in agreement with Zhang's conjecture. For the case a=0a=0, b=1b=1 we provide strong evidence that the stationary expectation tends to 1/2\sqrt{1/2}.Comment: 47 pages, 3 figure

    Short-time Gibbsianness for Infinite-dimensional Diffusions with Space-Time Interaction

    Get PDF
    We consider a class of infinite-dimensional diffusions where the interaction between the components is both spatial and temporal. We start the system from a Gibbs measure with finite-range uniformly bounded interaction. Under suitable conditions on the drift, we prove that there exists t0>0t_0>0 such that the distribution at time tt0t\leq t_0 is a Gibbs measure with absolutely summable interaction. The main tool is a cluster expansion of both the initial interaction and certain time-reversed Girsanov factors coming from the dynamics
    corecore