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Abstract. For a map of the unit interval with an indifferent fixed point, we prove an
upper bound for the variance of all observables of n variables, K : [0, 1]n→ R, which are
separately Lipschitz. The proof is based on coupling and decay of correlation properties
of the map. We also present applications of this inequality to the almost-sure central limit
theorem, the kernel density estimation, the empirical measure and the periodogram.

1. Introduction
Nowadays, concentration inequalities are a fundamental tool in probability theory and
statistics; we refer the reader to [11, 14, 16, 17, 20], for instance. In particular,
concentration inequalities have turned out to be essential tools in developing a non-
asymptotic theory in statistics, exactly as the central limit theorem and large deviations
have played a central role in the asymptotic theory. Besides the non-asymptotic aspect
of concentration inequalities, a crucial point is that they allow us, in principle, to
study random variables Zn = K (X1, . . . , Xn) that, while depending ‘smoothly’ on the
underlying random variables X i , can be defined only in an indirect or complicated way
and for which explicit computations can be very hard, even in the case where the X i ’s are
independent.

In the context of dynamical systems, central limit theorems and their refinements,
large deviation estimates, and other types of limit theorems have been proved almost
exclusively for Birkhoff sums of sufficiently ‘smooth’ observables. However, many natural
observables are not Birkhoff sums. For now, let us just mention a typical example
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(see below for further examples), namely the so-called power spectrum, i.e. the Fourier
transform of the correlation function, whose estimator is the integral of the periodogram.
This is a very complicated quantity from the analytic point of view. Besides overcoming
the computational difficulties pertaining to each observable, one would like to develop a
systematic method for dealing with the question of fluctuations of observables, instead of
designing a particular method for each case.

A possible approach is to use concentration inequalities. We note that an additional
difficulty arises for dynamical systems, namely the fact that independence is lost except
in very special cases, and the mixing properties of dynamical systems are not as nice
as those of the stochastic processes usually encountered in probability theory, such as
Markov chains and renewal processes. Therefore, new methods are needed, preferably
based on typical dynamical systems tools such as the spectral gap (when it exists) of
the transfer operator and the decay of correlations. The first concentration inequality in
the dynamical systems context was obtained by Collet et al [9] for uniformly expanding
maps of the interval, without assuming the existence of a Markov partition. Collet et
al derived the so-called Gaussian concentration inequality (also called the exponential
concentration inequality) by bounding the exponential moment of any observable of n
variables, assuming only that the observable is separately Lipschitz; they also deduced
several applications (kernel density estimation, shadowing, etc). In the hope of proving
concentration inequalities for more general dynamical systems, one might start with an
inequality for the variance, which then leads to a polynomial concentration inequality.
This route was indeed taken in [5] for a large class of non-uniformly hyperbolic systems
modeled by a ‘Young tower with exponential return times’ [21]. In [6], the authors of [5]
showed the usefulness of this variance inequality (therein called the ‘Devroye inequality’)
through various examples. Let us also mention another approach based on coupling (see,
e.g., [4, 8]), which gives an alternative proof of the Gaussian concentration inequality in
the case of uniformly expanding maps of the interval, and has also been used in the context
of Gibbs random fields.

As regards Birkhoff sums of ‘smooth’ (e.g. Hölder) observables, central limit theorems
and large deviation estimates have been proved both for systems that can be modeled by a
Young tower with exponential return-time tail, as mentioned above, and for systems with a
summable return-time tail; see, e.g., [18, 19, 21, 22]. A natural question, therefore, is to try
to prove an inequality for the variance of any observable of n variables, assuming only that
the observable is separately Lipschitz, as in [5], but relaxing the exponential decay of the
return-time tail of Young towers [22]. This would provide a way of analyzing fluctuations
of complicated observables which are not Birkhoff sums. The classical and simplest
example is a map of the unit interval with an indifferent fixed point. In this paper, we prove
a variance inequality for the map T defined by T (x)= x + 2αx1+α when x ∈ [0, 1/2[
and which is strictly expanding on [1/2, 1], where α is small enough (Theorem 3.1).
However, the proof applies verbatim to the class of maps with a unique indifferent fixed
point considered in [13]. The major difference from the situation in [5, 9] is that the
transfer operator has no spectral gap and the decay of correlations is polynomial rather
than exponential. Thus, we develop a different approach based on decay of correlations.
We need to control the covariance of C0 functions and Lipschitz functions, which was
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done by Hu in [13]. An important ingredient is coupling through the Kantorovich–
Rubinstein duality theorem. At present, we are not able to construct explicitly a coupling
for the backward process like the one constructed in [1] for uniformly expanding maps
of the interval. This explicit coupling was used in [8] in order to prove the Gaussian
concentration inequality. In addition to proving the variance inequality, we shall show
various applications of it: to the almost-sure central limit theorem, the kernel density
estimation, the empirical measure, the integrated periodogram, and shadowing.

The paper is organized as follows. Section 2 summarizes the information we need about
the maps, while §3 contains our main result, namely the variance inequality for separately
Lipschitz observables. In §4 we give various applications of the main theorem and, finally,
in §5 the proof of the variance inequality is presented.

2. The map and its properties
2.1. The map and the invariant measure. For the sake of definiteness, we consider the
maps T : [0, 1] 	 such that, on [0, 1/2[,

T (x)= x + 2αx1+α,

and |T ′(x)|> 1, |T ′′(x)|<∞ on [1/2, 1]. In fact, all of what follows will be valid under
the assumptions of Hu [13].

For α ∈ [0, 1[, this map admits an absolutely continuous invariant probability measure
dµ(x)= h(x) dx , where h(x)∼ x−α as x tends to 0.

We define the sequence of points x` by x0 = 1, x1 = 1/2 and, for `≥ 2, T (x`)= x`−1

and x` < 1/2. It is easy to verify that the sequence of intervals

I` := ]x`+1, x`]

for `= 0, 1, 2, . . . is a Markov partition of the interval ]0, 1].
From, for example, [13], we have the behavior

|I`| ∼ `
−1/(α−1), x` ∼ `

−1/α. (1)

2.2. Decay of correlations. The covariance or correlation coefficient Covv,w(`) of two
L2(µ) functions v, w : [0, 1] → R is defined, as usual, by

Covv,w(`)=
∫
v ◦ T `w dµ−

∫
v dµ

∫
w dµ.

When v = w, we simply write Covv for the coefficient.
Various researchers have established the (optimal) decay of correlations for the map T ,

that is, Covv,w(`)≈ `−(1/α)+1. In [22], this was proved for v, w both being Hölder. It
turns out that we shall need the following estimate proved in [13]: there exists a number
C > 0 such that, for all v ∈ C0 and w Lipschitz, we have the decay

|Covv,w(`)| ≤ C ‖v‖C0Lip(w)γ`, (2)

where
γ` := `

−1/(α+1) (3)
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and

Lip(w)= sup
x 6=x ′

|w(x)− w(x ′)|

|x − x ′|
.

In [13], C is a function of w; but, in fact, C can be taken to be constant as a consequence
of an abstract result [6, Theorem B.1]. Very often, this uniform estimate makes a natural
appearance in proofs; see, for example, [22].

2.3. Central limit theorem. Using [13, Proposition 5.2] and [15], we obtain a central
limit theorem for Lipschitz observables when 0< α < 1/2: given any Lipschitz v which is
not of the form h − h ◦ T for any square-integrable function h and is such that

∫
v dµ= 0,

we have

µ

(
1

σv
√

n

n−1∑
j=0

v ◦ T j
≤ t

)
n→∞
−→

1
√

2π

∫ t

−∞

e−ξ
2/2 dξ for all t ∈ R, (4)

where

σ 2
v = Covv(0)+ 2

∞∑
`=1

Covv(`) > 0.

3. Variance inequality
Our main theorem gives an upper bound for the variance of any separately Lipschitz
function.

We introduce the convenient notation

T q
p (x)= (T

p(x), T p+1(x), . . . , T q(x)) and zq
p = z p, z p+1, . . . , zq

for 0≤ p ≤ q. If we take a function K of n variables, in this notation we can write
K (z j−1

1 , z j , zn
j+1) for K (z1, z2, . . . , zn).

A real-valued function K on [0, 1]n is said to be separately Lipschitz if, for all
1≤ j ≤ n, the following quantities are finite:

Lip j (K ) := sup
zn

1

sup
z j 6=ẑ j

∣∣K (z j−1
1 , z j , zn

j+1)− K (z j−1
1 , ẑ j , zn

j+1)
∣∣

|z j − ẑ j |
.

Our main theorem is stated as follows.

THEOREM 3.1. Let T be the map defined in §2. Then, for any α ∈ [0, 4−
√

15 [, there
exists D = D(α) > 0 such that for any separately Lipschitz function K : [0, 1]n→ R, we
have ∫ (

K (T n−1
0 (x))−

∫
K (T n−1

0 (y)) dµ(y)

)2

dµ(x)≤ D
n∑

j=1

(Lip j (K ))
2. (5)

(This inequality is referred to as the ‘Devroye inequality’ in [5, 6].)
An application of Chebychev’s inequality immediately yields the following

concentration inequality.
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COROLLARY 3.2. Under the assumptions of Theorem 3.1,

µ

(
x ∈ [0, 1] :

∣∣∣∣K (T n−1
0 (x))−

∫
K (T n−1

0 (y)) dµ(y)

∣∣∣∣≥ t

)
≤

D
∑n

j=1 Lip j (K )
2

t2

for all t > 0.

Let us make several comments on the theorem.
We expect (5) to be true for α ∈ [0, 1/2[. However, the present proof does not seem

to allow us to go beyond 4−
√

15. Recall that for α ∈ [0, 1/2[, we have the central limit
theorem (and stronger versions of it).

Instead of using (2), we could have worked with the decay of correlations for L∞ and
Hölder functions proved in [22, Theorem 5]. However, the present proof would lead to a
smaller interval of α’s in the theorem.

In our context, we cannot expect a Gaussian concentration bound, i.e. a bound for the
exponential moment of K . This would give a Gaussian concentration inequality which
is incompatible with the large deviation lower bounds obtained in [18] where, for a large
class of Hölder observables v, it was proved that, given ε > 0 small enough,

µ

({
x ∈ [0, 1] :

∣∣∣∣ Snv(x)

n
−

∫
v dµ

∣∣∣∣> ε})≥ n−((1/α)−1+δ)

for any δ > 0 and infinitely many n’s, where Snv = v + v ◦ T + · · · + v ◦ T n−1. This type
of inequality has also been obtained in [10] under different conditions.

Despite the previous comment, one expects to be able to control moments higher than
the second one; in principle, this could be done in the spirit of [4, Theorem 3].

4. Some applications
We now give some applications of the variance inequality (5). We follow [6] where
we obtained these results in an abstract setting: therein we assumed that (Xk) was
some real-valued, stationary, ergodic process satisfying (5) together with, eventually, an
extra condition on the auto-covariance of Lipschitz observables, which depended on each
specific application. By (2) we have

∞∑
`=1

Covv(`)≤ C ′(Lip(v))2,

where C ′ = C
∑
` γ` <∞. This condition will be sufficient for applying all the results

from [6] that we shall use.
The standing assumption in this section is that 0< α < 4−

√
15, so that Theorem 3.1

holds.

4.1. Almost-sure central limit theorem. For an observable v such that
∫
v dµ= 0,

define the sequence of weighted empirical (random) measures of the normalized Birkhoff
sum by

An(x)=
1

Dn

n∑
k=1

1
k
δSkv(x)/

√
k,

where Dn =
∑n

k=1(1/k).
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We say that the almost-sure central limit theorem holds if for µ-almost every x , An(x)
converges weakly to the Gaussian measure. In fact, we will prove a stronger statement,
namely that the convergence takes place in the Kantorovich distance.

Recall that the Kantorovich distance between two probability measures µ1 and µ2 on
R is defined by

κ(µ1, µ2)= sup
g∈L

∫
g(ξ) d(µ1 − µ2)(ξ), (6)

where L denotes the set of real-valued Lipschitz functions on R with Lipschitz constant at
most one.

We denote by N (0, σ 2
v ) the Gaussian measure with mean zero and variance σ 2

v .

THEOREM 4.1. Let v be a Lipschitz function which is not of the form h − h ◦ T , and
assume that

∫
v dµ= 0. Then, for µ-almost every x, one has

lim
n→∞

κ(An(x),N (0, σ 2
v ))= 0.

The theorem is an immediate application of [6, Theorem 8.1] and (4).
Observe that this theorem immediately implies that for µ-almost every x, An(x)

converges weakly to the Gaussian measure. The weak convergence was proved in [7]
via another method (and not only for the present intermittent map). In [3], a speed of
convergence in the Kantorovich distance was obtained for uniformly expanding maps of
the interval by means of a Gaussian bound.

4.2. Kernel density estimation. We consider the sequence of regularized (random)
empirical measures Hn(x) with densities (hn) defined by

hn(x; s)=
1

nan

n∑
j=1

ψ((s − T j (x))/an),

where an is a positive sequence which converges to 0 and is such that nan converges
to +∞, while ψ (the kernel) is a bounded, non-negative, Lipschitz-continuous function
with compact support whose integral equals 1. We are interested in the convergence
in L1(ds) of this empirical density hn(x; ·) to the density h(·) of the invariant measure
dµ(x)= h(x) dx . This is none other than the distance in total variation between Hn(x)
and µ, namely

distTV(Hn(x), µ)=
∫
|hn(x; s)− h(s)| ds.

THEOREM 4.2. Let ψ and an be as described above. Then there exists a constant
C = C(ψ) > 0 such that for any integer n and any t > C(a1−α

n + 1/(
√

na2
n)), we have

µ({x ∈ [0, 1] : distTV(Hn(x), µ) > t})≤
C

t2na2
n
.

This theorem is a direct consequence of [6, Theorem 6.1] (with τ = 1− α).
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4.3. Empirical measure. The empirical measure associated with x, T x, . . . , T n−1x is
the random measure on [0, 1] defined by

En(x)=
1
n

n−1∑
j=0

δT j (x),

where δ is the Dirac measure. From Birkhoff’s ergodic theorem, for µ-almost every x this
sequence of random measures converges weakly to µ. We want to estimate the speed of
this convergence with respect to the Kantorovich distance (6) (now used for probability
measures on [0, 1]).

THEOREM 4.3. There exists a positive constant C such that for all t > 0 and n ≥ 1,

µ

({
x ∈ [0, 1] : κ(En(x), µ) > t +

C

n1/4

})
≤

D

nt2 .

This is an immediate consequence of [6, Theorem 5.2].

4.4. Integrated periodogram. Let v be an L2(µ) observable and assume, for the sake of
simplicity, that

∫
v dµ= 0. We recall (see, e.g., [2]) that the raw periodogram (of order n)

of the process (v ◦ T k) is the random variable

I vn (ω; x)=
1
n

∣∣∣∣ n∑
j=1

e−i jω(v(T j (x)))

∣∣∣∣2,
where ω ∈ [0, 2π ]. The spectral distribution function of order n (integral of the raw
periodogram of order n) is given by

J vn (ω; x)=
∫ ω

0
I vn (s; x) ds.

Let Ĉv(ω) be the Fourier cosine transform of the auto-covariance of v, namely

Ĉv(ω)=
∞∑

k=0

cos(ωk) Covv(k + 1).

We will denote by J v(ω) the quantity

J v(ω)=
∫ ω

0
(2Ĉv(s)− Covv(0)) ds = Covv(0)ω + 2

∞∑
k=1

sin(ωk)

k
Covv(k).

THEOREM 4.4. Let v be a Lipschitz observable. Then there exists a positive constant
C = C(v) such that for any n ≥ 1, one has∫ (

sup
ω∈[0,2π ]

∣∣ J̃ vn (ω; x)− J v(ω)
∣∣)2

dµ(x)≤ C
(1+ log n)4/3

n2/3 .

This theorem is a direct application of [6, Theorem 3.1] and the remark just after it.
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4.5. Shadowing and mismatch. Let A be a set of initial conditions with positive
measure. If x /∈ A, we might ask how well the orbit of x can be approximated by an
orbit starting from an initial condition in A.

We can measure the average quality of ‘shadowing’ by the quantity

Z A(x)=
1
n

inf
y∈A

n−1∑
j=0

|T j (x)− T j (y)|.

THEOREM 4.5. Let A be a subset of positive measure. Then, for all n ≥ 1 and all t > 0,
one has

µ

({
x ∈ [0, 1] : Z A(x)≥

1

n1/3

(
t +

24/3 D1/3

µ(A)

)})
≤

D

n1/3t2 .

We can also look at the degree of mismatch at a given precision: for ε > 0, let

Z ′A,ε(x)=
1
n

inf
y∈A

Card{0≤ j ≤ n − 1 : |T j (x)− T j (y)|> ε}.

THEOREM 4.6. Let A be a subset of positive measure. Then, for all n ≥ 1, t > 0 and any
ε > 0, one has

µ

({
x ∈ [0, 1] : Z ′A,ε(x)≥

1

ε2/3n1/3

(
t +

24/3 D1/3

µ(A)

)})
≤

D

ε2/3n1/3t2 .

Theorem 4.5 is a direct application of [6, Theorem 7.1], whereas Theorem 4.6 is a direct
application of [6, Theorem 7.2].

5. Proof of Theorem 3.1
5.1. First telescoping. Let (Xn)n∈N0 be the stationary process where X0 is distributed
according to µ and X i = T (X i−1) for i ≥ 1. The expectation in this process is denoted
by E. We shall use the abbreviation X j

i := (X i , X i+1, . . . , X j ) for i ≤ j , and denote
by F n

i the sigma-field generated by X i , X i+1, . . . , Xn for i ≤ n; by convention, F n
n+1 =

{∅, [0, 1]}, the trivial sigma-field. We then have the following telescoping identity
(martingale difference decomposition):

K (X0, . . . , Xn−1)− E(K (X0, . . . , Xn−1)) =

n∑
i=1

E(K |F n−1
i−1 )− E(K |F n−1

i )

=:

n∑
i=1

Vi .

The measurable function E(K |F n−1
i−1 ) is a function of X i−1, . . . , Xn−1 only. When

evaluated along an orbit segment T n−1
0 (x), it takes the value

E(K |F n−1
i−1 )(T

n−i
0 (x)) = E(K (X0, . . . , Xn−1)|X

n−1
i−1 = T n−i

0 (x))

=

∑
y:T i−1(y)=x

h(y)

h(x)|(T i−1)′(y)|
K (T i−2

0 (y), T n−i
0 (x)).
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To obtain the second equality, notice that the reversed process (Xn−i )i=0,...,n is a Markov
chain with transition probability kernel

P(X0 = dz|X1 = x)=
∑

y:T (y)=x

h(y)

h(x)|T ′(y)|
δ(y − z), (7)

and similarly,

P(X0 = dz|Xk = x)=
∑

y:T k (y)=x

h(y)

h(x)|(T k)′(y)|
δ(y − z).

The identity (7) follows at once from Bayes formula together with the identity P(X1 =

x |X0 = z)= δ(x − T (z)).
Since F n−1

i ⊂ F n−1
j for i ≥ j , we have the orthogonality property

E(Vi V j )= 0 for i 6= j,

and hence

E(K − E(K ))2 =
n∑

i=1

E(V 2
i ).

The function Vi is F n−1
i−1 -measurable, and

Vi (T
n−i

0 (x))= E(K |Xn−1
i−1 = T n−i

0 (x))− E(K |Xn−1
i = T n−i

1 (x)).

Hence, by the Cauchy–Schwarz inequality,

V 2
i (T

n−i
0 (x)) ≤

∫
P(X i−1 = dx ′|Xn−1

i = T n−i
1 (x))

× [E(K |Xn−1
i−1 = T n−i

0 (x))− E(K |Xn−1
i−1 = (x

′, T n−i
0 (x)))]2

=

∑
x ′:T (x ′)=T (x)

h(x ′)

h(T (x))|T ′(x ′)|
[E(K |X i−1 = x)− E(K |X i−1 = x ′)]2.

For x and x ′ such that T (x)= T (x ′), define

Mi (x, x ′) := E(K |X i = x)− E(K |X i = x ′)

and let µi
x denote the conditional distribution of X0, . . . , X i−1 given that X i = x . By

using the Lipschitz property of K , we get

|Mi (x, x ′)| ≤ 2 Lipi (K )+

∣∣∣∣∫ K (zi−1
0 , 0, T n−i−1

1 (x)) (dµi
x (z

i−1
0 )− dµi

x ′(z
i−1
0 ))

∣∣∣∣
and thus obtain

E(V 2
i ) =

∫ ∑
x ′:T (x ′)=T (x)

h(x ′)

h(T (x))

dµ(x)

|T ′(x ′)|
M2

i (x, x ′)

≤ 8(Lipi (K ))
2
+ 2

∫ ∑
x ′:T (x ′)=T (x)

h(x ′)

h(T (x))

dµ(x)

|T ′(x ′)|

×

[∫
K (zi−1

0 , 0, T n−i−1
1 (x)) (dµi

x (z
i−1
0 )− dµi

x ′(z
i−1
0 ))

]2

.
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Furthermore, let us use the abbreviation

0i (x, x ′) :=
∫

K (zi−1
0 , 0, T n−i−1

1 (x)) (dµi
x (z

i−1
0 )− dµi

x ′(z
i−1
0 )). (8)

We then obtain

E(K − EK )2 ≤ 8
n∑

i=1

(Lipi (K ))
2

+ 2
n∑

i=1

∫
dµ(x)

∑
x ′:T (x ′)=T (x)

h(x ′)

h(T (x))|T ′(x ′)|
02

i (x, x ′). (9)

(Observe that 0k(x, x)= 0.)

5.2. Second telescoping. Our aim now is to further estimate the quantity 0i (x, x ′) by
using a second telescoping where the decay of correlations (2) can be used.

Let
9k(x) := E(K (X0, . . . , Xk−1, 0, T n−k−1

1 (x))|Xk = x).

With this notation, (8) reads

0k(x, x ′)=9k(x)−9k(x
′). (10)

The idea is to telescope the 9k’s by introducing an independent copy (Yi )i∈N0 of the
process (X i )i∈N0 . We write

9k(x) =
k∑

p=1

E[K (X p−1
0 , Y k−1

p , 0, T n−k−1
1 (x))

− K (X p−2
0 , Y k−1

p−1, 0, T n−k−1
1 (x))|Xk = x]

+ E(K (Y0, . . . , Yk−1, 0, T n−k−1
1 (x))), (11)

where now E denotes expectation with respect to both random variables X and Y , and we
make the convention that if Y j

i (respectively X j
i ) occurs with j < i , then Y (respectively

X ) is simply not present.
Combining (10) and (11), we obtain

0k(x, x ′)=
k∑

p=1

∫
ωp−1(z

p−1
0 , T n−k−1

1 (x))(dµp−1,k−p+1
x (z)− dµp−1,k−p+1

x ′ (z)),

where µp−1,k−p+1
x is the conditional distribution of X0, . . . , X p−1 given Xk = x , and

ωp−1(z
p−1
0 , T n−k−1

1 (x)) := E[K (z p−1
0 , Y k−1

p , 0, T n−k−1
1 (x))

− K (z p−2
0 , Y k−1

p−1, 0, T n−k−1
1 (x))], (12)

with the expectation being taken with respect to Y . Observe that

|ωp−1(z
p−1
0 , T n−k−1

1 (x))| ≤ Lipp(K ).
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We now define the distance

dp(z
p
0 , ẑ p

0 ) := inf
(

2Lipp+1(K ),
p∑

j=0

Lip j+1(K )|z j − ẑ j |

)
.

Without loss of generality, we assume that inf j Lip j (K ) > 0. Hence, equipped with the
distance dp, [0, 1]p+1 is a complete, separable metric space. From (12) it follows that

sup
z p−1

0 6=ẑ p−1
0 ,xn−k−1

1

|ωp−1(z
p−1
0 , xn−k−1

1 )− ωp−1(ẑ
p−1
0 , xn−k−1

1 )|

dp−1(z
p−1
0 , ẑ p−1

0 )
≤ 1,

i.e. for each fixed x , the function z p−1
0 7→ ωp−1(z

p−1
0 , T n−k−1

1 (x)) is Lipschitz with
respect to the dp−1 distance, with Lipschitz norm less than or equal to one.

Denote by cp,q
x,x ′(z

p
0 , ẑ p

0 ) the Kantorovich–Rubinstein coupling, associated with the

distance dp, of the measures µp,q
x and µp,q

x ′ (cf. [12, Theorem 11.8.2, p. 421]).
For this coupling we have∫

dp(z
p
0 , ẑ p

0 ) dcp,k−p
x,x ′ (z p

0 , ẑ p
0 )= sup

f :Lipdp ( f )≤1

(∫
f dµp,k−p

x −

∫
f dµp,k−p

x ′

)
.

Hence, from the definition of the distance dp and the Kantorovich–Rubinstein duality
theorem [12], one gets

|0k(x, x ′)| =

∣∣∣∣k−1∑
p=0

∫
ωp(z

p
0 , T n−k−1

1 (x))(dµp,k−p
x (z p

0 )− dµp,k−p
x ′ (z p

0 ))

∣∣∣∣
=

∣∣∣∣k−1∑
p=0

∫
[ωp(z

p
0 , T n−k−1

1 (x))− ωp(ẑ
p
0 , T n−k−1

1 (x))] dcp,k−p
x,x ′ (z p

0 , ẑ p
0 )

∣∣∣∣
≤

k−1∑
p=0

∫
dp(z

p
0 , ẑ p

0 ) dcp,k−p
x,x ′ (z p

0 , ẑ p
0 )

=

k−1∑
p=0

(
sup

f :Lipdp ( f )≤1

(∫
f dµp,k−p

x −

∫
f dµp,k−p

x ′

))
. (13)

In order to estimate 0k , we will exploit the fact that for k − p ‘large’, the measure
µ

p,k−p
x is ‘close to’ the invariant measure µ. More precisely, passing from µ

p,0
x to µp,k−p

x

involves k − p iterations of the normalized Perron–Frobenius operator.

5.3. Distortion and correlation estimates. We now proceed by estimating the final
expression in (13).

Define, as usual, the normalized Perron–Frobenius operator

Lw(x) = E(w(X0)|X1 = x)

=

∫
w(y)P(X0 = dy|X1 = x)

=

∑
u:T (u)=x

h(u)

h(x)|T ′(u)|
w(u).
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By the Markov property of the reversed process, we have

Lkw(x)= E(w(X0)|Xk = x)=
∫
w(y)P(X0 = dy|Xk = x).

For f a function of (p + 1) variables, define

f p(x) = E( f (X0, . . . , X p)|X p = x)

=

∑
u:T p(u)=x

h(u)

h(x)|(T p)′(u)|
f (T p

0 (u)).

We then have∫
f dµp,k−p

x = E( f (X0, . . . , X p)|Xk = x)

=

∫
E( f (X0, . . . , X p)|X p = y) P(X p = dy|Xk = x)

= Lk−p f p(x).

The next three lemmas will be useful.

LEMMA 5.1. Let f be such that Lipdp
( f )≤ 1. Then, for any y, ỹ ∈ I` and m ≥ 0, we

have

|(Lm f p)(y)− (L
m f p)(ỹ)| ≤ C p

|y − ỹ|

y
, (14)

where

C p =O(1)
p∑

j=0

Lip j+1(K )

(p − j + 1)1/α
.

Proof. Observe that it is enough to prove the lemma in the case where f vanishes at some
point; the general case follows upon adding a constant. Without loss of generality, we can
assume that (Lm f p)(y)≤ (Lm f p)(ỹ). Indeed, the opposite case would actually lead to the
same estimate, because there exists a constant C > 0 such that y/ỹ ≤ C for all y, ỹ ∈ I`
and all `.

Since f vanishes at some point and Lipdp
( f )≤ 1, we have that | f p(T

p
0 (·))|/Lipp+1(K )

≤ 2. We also have |Lm f p(T
p

0 (·))|/Lipp+1(K )≤ 2. Now we use the inequality

1+
3(a − b)

5
≤

1+ a

1+ b
,

which holds for all a, b such that −2/3≤ b ≤ a ≤ 2/3. This gives∣∣∣∣ (Lm f p)(y)

3Lipp+1(K )
−
(Lm f p)(ỹ)

3Lipp+1(K )

∣∣∣∣≤ 5
3

(
(Lm f p)(y)+ 3Lipp+1(K )

(Lm f p)(ỹ)+ 3Lipp+1(K )
− 1

)
, (15)

and we have

(Lm f p)(y)+ 3Lipp+1(K )

(Lm f p)(ỹ)+ 3Lipp+1(K )
≤

h(ỹ)

h(y)
sup
z,z̃

h(z)

h(z̃)

T (p+m)′(z̃)

T (p+m)′(z)

f (T p
0 (z))+ 3Lipp+1(K )

f (T p
0 (z̃))+ 3Lipp+1(K )

,

(16)
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where the supremum is taken over pairs (z, z̃) of pre-images of y and ỹ whose iterates lie
in the same atoms of the Markov partition until p + m. To estimate this, we use the bounds

h(ỹ)

h(y)
≤ 1+ C

|y − ỹ|

y
,

T (p+m)′(z̃)

T (p+m)′(z)
≤ 1+ C

|y − ỹ|

y

proved in [13]: the first inequality follows from the fact that h belongs to the space G [13,
p. 502], whereas the second one is just [13, Proposition 2.3(ii)]. We also use the bounds

|z − z̃|

z
≤ C
|y − ỹ|

y
(17)

and

|T j (z)− T j (z̃)| ≤
C

(p − j + 1)1/α
|T p(z)− T p(z̃)|

T p(z)
, (18)

which are proved in Appendix A (Lemmas A.1 and A.2).
Therefore, using (18), we get

f (T p
0 (z))+ 3 Lipp(K )

f (T p
0 (z̃))+ 3 Lipp+1(K )

≤ 1+O(1)
| f (T p

0 (z))− f (T p
0 (z̃))|

Lipp+1(K )

≤ 1+
O(1)

Lipp+1(K )

p∑
j=0

Lip j+1(K )

(p − j + 1)1/α
|T p(z)− T p(z̃)|

T p(z)
.

Applying (17) and all the previous bounds in (16), we obtain

(Lm f p)(y)+ 3 Lipp+1(K )

(Lm f p)(ỹ)+ 3 Lipp+1(K )
≤ 1+

O(1)
Lipp+1(K )

|y − ỹ|

y

p∑
j=0

Lip j+1(K )

(p − j + 1)1/α
.

This inequality, together with (15), completes the proof of the lemma. 2

LEMMA 5.2. Let f be such that Lipdp
( f )≤ 1. Then, for any q ≥ 0, we have∫ ∣∣∣∣Lq

(
f p −

∫
f p dµ

)∣∣∣∣ dµ≤ Dpγ
(1−α)/3
q ,

where

Dp =O(1)C p.

Proof. Let M > 0 be an integer and take ε > 0 (to be fixed later on). Recall the notation
I` = ]x`+1, x`]. For `≤ M , we define the sequence of functions f `p , each vanishing outside
I`, by

f `p(x) :=



x − x`+1

ε|I`|
f p(x`+1 + ε|I`|) for x ∈ [x`+1, x`+1 + ε|I`|],

f p(x) for x ∈ [x`+1 + ε|I`|, x` − ε|I`|],

x` − x

ε|I`|
f p(x` − ε|I`|) for x ∈ [x` − ε|I`|, x`].
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We have the identity

Lq
(

f p −

∫
f p dµ

)
=

M∑
`=0

Lq
(

f `p −
∫

f `p dµ

)
+Lq

(
f p −

M∑
`=0

f `p

)

−Lq
(∫

f p dµ−
M∑
`=0

∫
f `p dµ

)
.

The decay of correlations (2) gives us∫ ∣∣∣∣Lq
(

f `p −
∫

f `p dµ

)∣∣∣∣ dµ = sup
u:‖u‖C1≤1

∫
uLq

(
f `p −

∫
f `p dµ

)
dµ

≤
C p

ε|I`|
γq

since | f p| ≤ C p, by using Lemma 5.1 with m = 0.
On the other hand, we have∫ ∣∣∣∣ f p −

M∑
`=0

f `p

∣∣∣∣ dµ≤ 2C p

M∑
`=0

ε|I`|h` + C p

∞∑
`=M+1

|I`|h`.

The optimal bound is obtained with

ε = γ
1/2
q M1+(1/2α), M = γ−α/3q ,

and the result follows. 2

LEMMA 5.3. Let f be such that Lipdp
( f )≤ 1. Then, for any q ≥ 0 and `≥ 0, we have∥∥∥∥Lq

(
f p(x)−

∫
f p dµ

)∥∥∥∥
L∞(I`)

≤1(`, q; f p),

where

1(`, q; f p) :=


2
|I`|

∫
I`
|gq, f p | dx if C p|I`|2 ≤ x`

∫
I`
|gq, f p | dx,

2

√
C p

∫
I`
|gq, f p |dx

x`
otherwise,

with

gq, f p =Lq
(

f p −

∫
f p dµ

)
.

Proof. By (14), we have

|gq, f p (y)− gq, f p (y
′)| ≤ C p

|y − y′|

x`

for y, y′ ∈ I`.
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Hence, if we let J ⊆ I` and y ∈ J , then it follows that

|gq, f p (y)| ≤
1
|J |

∫
J
|gq, f p (y

′)| dy′ +
1
|J |

∫
J
|gq, f p (y)− gq, f p (y

′)| dy′

≤
1
|J |

∫
J
|gq, f p | dx + C p

|J |

x`
.

The first case is obtained upon taking J = I`. In the second case, choose J such that

|J | =

√
x`
C p

∫
I`
|gq, f p | dx ≤ |I`|.

Thus the lemma is proved. 2

Now let us return to (9). We need to estimate∫
dµ(x)

∑
x ′:x 6=x ′,T (x)=T (x ′)

h(x ′)

h(T (x))|T ′(x ′)|
02

k (x, x ′)=: S1(k)+ S2(k), (19)

where

S1(k) :=
∞∑

m=1

∫
Im

dµ(x)
∑

x ′:x 6=x ′,T (x)=T (x ′)

h(x ′)

h(T (x))|T ′(x ′)|
02

k (x, x ′)

and

S2(k) :=
∫

I0

dµ(x)
∑

x ′:x 6=x ′,T (x)=T (x ′)

h(x ′)

h(T (x))|T ′(x ′)|
02

k (x, x ′),

with the intervals I` forming the Markov partition defined in §2.1.
We have the following two lemmas.

LEMMA 5.4. Let

Qk :=

∞∑
`=1

|I`| sup
x∈I`,x ′∈I0:T (x)=T (x ′)

02
k (x, x ′).

Then there exists a constant B > 0 such that for any k,

S1(k)≤ B Qk

and
S2(k)≤ B Qk .

Proof. First, observe that if m ≥ 1, x ∈ Im , T (x)= T (x ′) and x 6= x ′, then x ′ ∈ I0. Next,
using [13, Lemma 4.4 (iv)] and the fact that h is bounded on I0, we get

G := sup
m≥1

sup
x∈Im

sup
x ′∈I0

h(x ′)h(x)

h(T (x))|T ′(x ′)|
<∞.

The bound on S1(k) follows immediately.
For the bound on S2(k), we write

S2(k)=
∑
m≥1

∫
I0

dµ(x)χIm (x
′)

∑
x ′:x 6=x ′,T (x)=T (x ′)

h(x ′)

h(T (x))

02
k (x, x ′)

|T ′(x ′)|
.
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Note that the term corresponding to m = 0 is absent because x 6= x ′. Observe that

G ′ := sup
m≥1

sup
x ′∈Im

sup
x∈I0,T (x)=T (x ′)

h(x ′)h(x)

h(T (x))|T ′(x ′)|
<∞

and there is a constant C > 0 such that for any m ≥ 1,

|{x ∈ I0 | T (x) ∈ T (Im)}| ≤ C |Im |.

The result follows. 2

LEMMA 5.5. Assume that α ∈ [0, 4−
√

15[. Then there exists a constant H > 0 such that
n∑

k=1

Qk ≤ H
n∑

j=1

(Lip j (K ))
2.

Proof. Observe that

sup
x∈I0,x ′∈Im

|0k(x, x ′)| ≤
k−1∑
p=0

sup
f :Lipdp ( f )≤1

1(0, k − p, f p)

+

k−1∑
p=0

sup
f :Lipdp ( f )≤1

1(m, k − p, f p)

= 6(0, k)+6(m, k),

where

6( j, k) :=
k−1∑
p=0

sup
f :Lipdp ( f )≤1

1( j, k − p, f p)

for j ≥ 0.
By lemma 5.2,

sup
f :Lipdp ( f )≤1

∫
|gq, f p | dµ≤O(1)C pγ

(1−α)/3
q .

Both cases of Lemma 5.3 lead to the bound

sup
f :Lipdp ( f )≤1

1(0, k − p, f p)≤O(1)C pγ
(1−α)/6
k−p .

Since α ∈ [0, 4−
√

15[, we have ∑
q
γ
(1−α)/6
q <∞,

and Young’s inequality yields

n∑
k=1

∑
m
|Im |6(0, k)2 ≤O(1)

∑
p

C2
p ≤O(1)

n∑
j=1

(Lip j (K ))
2.

We now bound ∑
`

|I`|6(`, k)2.
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From Lemma 5.3 we get∑
`

|I`|6(`, k)2 ≤ A1(k)+ A2(k),

where

A1(k) := 8
∑
`

|I`|

(k−1∑
p=0

sup
f :Lipdp ( f )≤1

√
C p

∫
I`
|gk−p, f p (x)| dx

x`

)2

and

A2(k) := 8
∑
`

|I`|

(k−1∑
p=0

1
|I`|

sup
f :Lipdp ( f )≤1

∫
I`
|gk−p, f p (x)| dx

)2

.

Observe that∫
I`
|gk−p, f p (x)| dx ≤

O(1)
`

∫
I`
|gk−p, f p | dµ≤

O(1)
`

C pγ
(1−α)/3
k−p

since h|I` ∼ `, by using Lemma 5.2. Hence

A1(k)≤O(1)
∑
`

|I`|

`x`

(k−1∑
p=0

C pγ
(1−α)/6
k−p

)2

,

which implies, as above,

n∑
k=1

A1(k)≤O(1)
n∑

j=1

(Lip j (K ))
2.

We now bound A2(k). By the Cauchy–Schwarz inequality, for any δ > 0 we have

A2(k)≤O(1)
∑
`

|I`|
k−1∑
p=0

1

|I`|2
sup

f :Lipdp ( f )≤1

(∫
I`
|gk−p, f p (x)| dx

)2

(k − p)1+δ.

Observe that if Lipdp
( f )≤ 1, then

‖gq, f p‖L∞ ≤ Lipp+1(K ).

Indeed,

f p(x)−
∫

f p dµ =
∫

dµp,0
x (z p

0 ) f (z p
0 )−

∫
dµ(y)

∫
dµp,0

y (ξ
p

0 ) f (ξ p
0 )

=

∫
dµp,0

x (z p
0 )

∫
dµ(y)

∫
dµp,0

y (ξ
p

0 )( f (z p
0 )− f (ξ p

0 )),

and we use Lipdp
( f )≤ 1 and the fact that L has L∞-norm equal to one. This implies that,

for any 0< σ < 2,

A2(k) ≤ O(1)
∑
`

1
|I`|

k−1∑
p=0

sup
f :Lipdp ( f )≤1

(∫
I`
|gk−p, f p (x)| dx

)σ
× (k − p)1+δ(Lipp+1(K ))

2−σ
|I`|

2−σ .
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By using again h|I` ∼ `, together with Lemma 5.2 and the fact that Lipp(K )≤O(1)C p,
we get

A2(k)≤O(1)
∑
`

|I`|1−σ

`σ

k−1∑
p=0

C2
pγ

((1−α)/3)σ
k−p (k − p)1+δ.

Since α ∈ [0, 4−
√

15[, there exist 0< σ < 1 and δ > 0 such that∑
q
γ
((1−α)/3)σ
q q1+δ <∞,

and then
n∑

k=1

A2(k)≤O(1)
n∑

j=1

(Lip j (K ))
2.

This ends the proof of Lemma 5.5. 2

5.4. Completing the proof of Theorem 3.1. We now conclude the proof of our main
theorem. By (9) and (19), we have

E(K − EK )2 ≤ 8
n∑

i=1

(Lipi (K ))
2

+ 2
n∑

i=1

∫
dµ(x)

∑
x ′:T (x ′)=T (x)

h(x ′)

h(T (x))|T ′(x ′)|
02

k (x, x ′)

= 8
∑

k

(Lipk(K ))
2
+ 2

∑
k

(S1(k)+ S2(k)).

The theorem then follows from Lemmas 5.4 and 5.5.

A. Appendix
In this appendix we prove the inequalities (17) and (18) used in the proof of Lemma 5.1.
Recall the map T defined in §2.

LEMMA A.1. There exists a constant C > 0 such that for any integer m ≥ 1 and any pair
of points z, z̃ with T j (z) and T j (z̃) belonging to the same atom of the Markov partition
whenever 0≤ j ≤ m, one has

|z − z̃|

z
≤ C
|T m(z)− T m(z̃)|

T m z
.

Proof. We start by proving the inequality

|T m′(z)| ≥ C0

(
T m(z)

z

)1+α

, (20)

where C0 > 0 is independent of m and z.
There are two cases.
If z ≥ 1/2, the inequality holds provided that C0 ≤ 2−(1+α).
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Now consider the case z < 1/2. We define an integer q ≤ m as follows. If T j (z)≤ 1/2
for j = 0, 1, . . . , m − 1, then take q = m; otherwise take q to be the smallest integer such
that T q(z)≥ 1/2. Since z < 1/2, there is an integer `≥ 1 such that z ∈ I`. Moreover, T q

is a diffeomorphism from I` to I`−q . From the distortion lemma (see, e.g., [13, Proposition
2.3]), we get

|T q ′(z)| ≥ C1

(
I`−q

I`

)1+α

,

where C1 > 0 is independent of q and z. From (1) it follows that

|T q ′(z)| ≥ C2

(
T q(z)

z

)1+α

,

where C2 > 0 is independent of q and z. If q = m, then (20) is proved with C0 =

min(C2, 2−(1+α)). If q < m, then we observe that

|T m′(z)| = |T (m−q)′(T q(z))| |T q ′(z)| ≥ C2

(
T q(z)

z

)1+α

because |T (m−q)′
| ≥ 1. Since T q(z)≥ 1/2, we obtain

|T m′(z)| ≥
C2

21+α

1

z1+α ≥
C2

21+α

(
y

z

)1+α

.

This finishes the proof of inequality (20).
To prove the lemma, first observe that if T m(z)≤ z, then

|z − z̃| ≤ |T m(z)− T m(z̃)| ≤
z

T m(z)
|T m(z)− T m(z̃)|,

because the modulus of the derivative of T is greater than or equal to one. It remains to
consider T m(z) > z. In this case, observe that

|T m(z)− T m(z̃)| =

∣∣∣∣∫ z̃

z
T m′(ξ) dξ

∣∣∣∣= ∫ z̃

z
|T m′(ξ)| dξ ≥ C̃

(
T m(z)

z

)1+α

,

where we have again used the distortion estimates [13, Proposition 2.3], the behaviour (1),
and the monotonicity of T m ; here C̃ > 0 is independent of m, z and z̃. This immediately
implies that

|z − z̃|

z
≤

1

C̃

(
z

T m(z)

)α
|T m(z)− T m(z̃)|

T m z
,

hence the lemma is proved. 2

LEMMA A.2. There exists a constant C > 0 such that for any integer m ≥ 1 and any pair
of points z, z̃ with T j (z) and T j (z̃) belonging to the same atom of the Markov partition
whenever 0≤ j ≤ m, one has

|z − z̃| ≤
C

(m + 1)1/α
|T m(z)− T m(z̃)|

T m(z)
.
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Proof. Observe that if T m(z) < 1/(m + 1)1/α , then the estimate follows at once from the
fact that the modulus of the derivative of T is greater than or equal to one. So we now
assume that T m(z)≥ 1/(m + 1)1/α . Let `≥ 0 be the integer for which T m z ∈ I`. There
exists a unique z∗ in I`+m such that T m(z∗)= T m(z). Since z∗ is the T−m-preimage of
T m(z) that is closest to the neutral fixed point 0, one can easily show that there is a constant
c > 0 such that for any m and z, one has |T m′(z)| ≥ c|T m′(z∗)|.

As in the proof of the previous lemma, we make use of the distortion estimates [13,
Proposition 2.3] and (1) to obtain

|T m′(z)| ≥ c′
(`+ m)1+1/α

`1+1/α .

From the distortion estimates [13, Proposition 2.3] we get, using T m(z) ∈ I`, that

|T m(z)− T m(z̃)| ≥O(1)|T m′(z)| |z − z̃| ≥O(1)|T m(z)|
(`+ m)1+1/α

`
|z − z̃|.

This can be rewritten as

|z − z̃| ≤O(1)
`

(`+ m)1+1/α

|T m(z)− T m(z̃)|

|T m′ z|
≤O(1)

1

(1+ m)1/α
|T m(z)− T m(z̃)|

|T m′(z)|
.

The proof of the lemma is therefore complete. 2
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