17 research outputs found

    Human Melanoma-Associated Mast Cells Display a Distinct Transcriptional Signature Characterized by an Upregulation of the Complement Component 3 That Correlates With Poor Prognosis

    Full text link
    Cutaneous melanoma is one of the most aggressive human malignancies and shows increasing incidence. Mast cells (MCs), long-lived tissue-resident cells that are particularly abundant in human skin where they regulate both innate and adaptive immunity, are associated with melanoma stroma (MAMCs). Thus, MAMCs could impact melanoma development, progression, and metastasis by secreting proteases, pro-angiogenic factors, and both pro-inflammatory and immuno-inhibitory mediators. To interrogate the as-yet poorly characterized role of human MAMCs, we have purified MCs from melanoma skin biopsies and performed RNA-seq analysis. Here, we demonstrate that MAMCs display a unique transcriptome signature defined by the downregulation of the FcεRI signaling pathway, a distinct expression pattern of proteases and pro-angiogenic factors, and a profound upregulation of complement component C3. Furthermore, in melanoma tissue, we observe a significantly increased number of C3+^{+} MCs in stage IV melanoma. Moreover, in patients, C3 expression significantly correlates with the MC-specific marker TPSAB1, and the high expression of both markers is linked with poorer melanoma survival. In vitro, we show that melanoma cell supernatants and tumor microenvironment (TME) mediators such as TGF-β, IL-33, and IL-1β induce some of the changes found in MAMCs and significantly modulate C3 expression and activity in MCs. Taken together, these data suggest that melanoma-secreted cytokines such as TGF-β and IL-1β contribute to the melanoma microenvironment by upregulating C3 expression in MAMCs, thus inducing an MC phenotype switch that negatively impacts melanoma prognosis

    Bronchogenic cyst associated with pericardial defect: Case report and review of the literature

    Get PDF
    Partial defect of the pericardium combined with bronchogenic cyst is a very rare congenital anomaly. We describe the case of a 32-year-old man with a partial defect of the left pericardium and a bronchogenic cyst arising from the border of the pericardial defect. The cyst was successfully resected with the harmonic scalpel by three-port videothoracoscopic approach

    Generation of a Novel Regulatory NK Cell Subset from Peripheral Blood CD34+ Progenitors Promoted by Membrane-Bound IL-15

    Get PDF
    BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+) PB-HP. Finally, a small subset of NKp46(+) HLA-G(+) IL-10(+) is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+) CD16(+) NKp30(+) NKp44(+) NKp46(+) CD94(+) CD69(+) CCR7(+)) generated from specific pSTAT6(+) GATA3(+) precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Triglycerides from Urena lobata

    No full text
    Two triglycerides, both bearing polyunsaturated fatty acid residues, were isolated from the hexane extract of Urena lobata. One of them is characterized by the presence of three different polyunsaturated fatty acids. Their structures were studied with spectral methods

    Human Melanoma-Associated Mast Cells Display a Distinct Transcriptional Signature Characterized by an Upregulation of Complement Component 3 That Correlates With Poor Prognosis

    No full text
    Cutaneous melanoma is one of the most aggressive human malignancies and shows increasing incidence. Mast cells (MCs), long-lived tissue-resident cells that are particularly abundant in human skin where they regulate both innate and adaptive immunity, are associated with melanoma stroma (MAMCs). Thus, MAMCs could impact melanoma development, progression, and metastasis by secreting proteases, pro-angiogenic factors, and both pro-inflammatory and immuno-inhibitory mediators. To interrogate the as-yet poorly characterized role of human MAMCs, we have purified MCs from melanoma skin biopsies and performed RNA-seq analysis. Here, we demonstrate that MAMCs display a unique transcriptome signature defined by the downregulation of the FcεRI signaling pathway, a distinct expression pattern of proteases and pro-angiogenic factors, and a profound upregulation of complement component C3. Furthermore, in melanoma tissue, we observe a significantly increased number of C3(+) MCs in stage IV melanoma. Moreover, in patients, C3 expression significantly correlates with the MC-specific marker TPSAB1, and the high expression of both markers is linked with poorer melanoma survival. In vitro, we show that melanoma cell supernatants and tumor microenvironment (TME) mediators such as TGF-β, IL-33, and IL-1β induce some of the changes found in MAMCs and significantly modulate C3 expression and activity in MCs. Taken together, these data suggest that melanoma-secreted cytokines such as TGF-β and IL-1β contribute to the melanoma microenvironment by upregulating C3 expression in MAMCs, thus inducing an MC phenotype switch that negatively impacts melanoma prognosis
    corecore