26 research outputs found

    Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this proteomic study was to look for changes taking place in plasma proteomes of patients with acute myocardial infarction (AMI), unstable angina pectoris (UAP), and stable angina pectoris (SAP).</p> <p>Methods</p> <p>Depleted plasma proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Proteins were quantified using commercial kits. Apolipoprotein A1 was studied using 1D and 2D SDS-PAGE, together with western blotting.</p> <p>Results</p> <p>Reciprocal comparison revealed 46 unique, significantly different spots; proteins in 34 spots were successfully identified and corresponded to 38 different proteins. Discrete comparisons of patient groups showed 45, 41, and 8 significantly different spots when AMI, UAP, and SAP were compared with the control group. On the basis of our proteomic data, plasma levels of two of them, alpha-1 microglobulin and vitamin D-binding protein, were determined. The data, however, failed to prove the proteins to be suitable markers or risk factors in the studied groups. The plasma level and isoform representation of apolipoprotein A1 were also estimated. Using 1D and 2D SDS-PAGE, together with western blotting, we observed extra high-molecular weight apolipoprotein A1 fractions presented only in the patient groups, indicating that the novel high-molecular weight isoforms of apolipoprotein A1 may be potential new markers or possible risk factors of cardiovascular disease.</p> <p>Conclusion</p> <p>The reported data show plasma proteome changes in patients with AMI, UAP, and SAP. We propose some apolipoprotein A1 fractions as a possible new disease-associated marker of cardiovascular disorders.</p

    Effect of weight loss on HDL-apoA-II kinetics in the metabolic syndrome

    Get PDF
    Reduced HDL (high-density lipoprotein) concentration in the MetS (metabolic syndrome) is associated with increased risk of cardiovascular disease and is related to defects in HDL-apoA-II (apolipoprotein A-II) kinetics. Dietary restriction is the most commonly used weight loss strategy. In the present study, we examined the effect of weight loss on HDL-apoA-II kinetics in men with the MetS at the start and end of a 16-week intervention trial of a hypocaloric low-fat diet (n=20) compared with a weight maintenance diet (n=15), using a stable isotope technique and compartmental modelling. The low-fat diet achieved a significant reduction (P<0.01) in BMI (body mass index), abdominal fat compartments and HOMA (homoeostasis model assessment) score compared with weight maintenance. Weight loss also significantly (P<0.05) decreased both the production rate (−23%) and FCR (fractional catabolic rate) (−12%) of HDL-apoA-II, accounting for a net decrease in apoA-II concentration (−9%). Reductions in the HDL-apoA-II production rate were significantly associated with changes in body weight (r=0.683, P<0.01), plasma triacylglycerols (triglycerides) (r=0.607, P<0.01) and, to a lesser extent, plasma insulin (r=0.440, P=0.059) and HOMA-IR (HOMA of insulin resistance) (r=0.425, P=0.069). Changes in the apoA-II FCR were also significantly associated with reductions in visceral adipose tissue mass (r=0.561, P=0.010). In conclusion, in obese men with the MetS, short-term weight loss with a low-fat low-caloric diet lowers plasma apoA-II concentrations by decreasing both the production and catabolism of HDL-apoA-II. The cardiometabolic significance of this effect on HDL metabolism remains to be investigated further

    Apolipoprotein A-II Influences Apolipoprotein E-Linked Cardiovascular Disease Risk in Women with High Levels of HDL Cholesterol and C-Reactive Protein

    Get PDF
    Background: In a previous report by our group, high levels of apolipoprotein E (apoE) were demonstrated to be associated with risk of incident cardiovascular disease in women with high levels of C-reactive protein (CRP) in the setting of both low (designated as HR1 subjects) and high (designated as HR2 subjects) levels of high-density lipoprotein cholesterol (HDL-C). To assess whether apolipoprotein A-II (apoA-II) plays a role in apoE-associated risk in the two female groups. Methodology/Principal: Outcome event mapping, a graphical data exploratory tool; Cox proportional hazards multivariable regression; and curve-fitting modeling were used to examine apoA-II influence on apoE-associated risk focusing on HDL particles with apolipoprotein A-I (apoA-I) without apoA-II (LpA-I) and HDL particles with both apoA-I and apoA-II (LpA-I:A-II). Results of outcome mappings as a function of apoE levels and the ratio of apoA-II to apoA-I revealed within each of the two populations, a high-risk subgroup characterized in each situation by high levels of apoE and additionally: in HR1, by a low value of the apoA-II/apoA-I ratio; and in HR2, by a moderate value of the apoA-II/apoA-I ratio. Furthermore, derived estimates of LpA-I and LpA-I:A-II levels revealed for high-risk versus remaining subjects: in HR1, higher levels of LpA-I and lower levels of LpA-I:A-II; and in HR2 the reverse, lower levels of LpA-I and higher levels of LpA-I:A-II. Results of multivariable risk modeling as a function of LpA-I and LpA-I:A-II (dichotomized as highest quartile versus combined three lower quartiles) revealed association of risk only for high levels of LpA-I:A-II in the HR2 subgroup (hazard ratio 5.31, 95% CI 1.12-25.17, p = 0.036). Furthermore, high LpA-I: A-II levels interacted with high apoE levels in establishing subgroup risk. Conclusions/Significance: We conclude that apoA-II plays a significant role in apoE-associated risk of incident CVD in women with high levels of HDL-C and CRP
    corecore