308 research outputs found

    Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra

    Get PDF
    The quasi-biennial oscillation (QBO) of the zonal mean zonal wind is a dynamical phenomenon of the tropical middle atmosphere. Influences of the QBO can even be found at mid and high latitudes. It is widely accepted that the phase descent of alternating tropical easterlies and westerlies is driven by atmospheric waves of both global scale (equatorial wave modes like Kelvin, equatorial Rossby, Rossby-gravity, or inertia-gravity waves), as well as mesoscale gravity waves. However, the relative distribution of the different types of waves to the forcing of the QBO winds is highly uncertain. This is the case because until recently there were no high resolution long-term global measurements in the stratosphere. In our study we estimate Kelvin wave momentum flux and the contribution of zonal wind forcing by Kelvin waves based on space-time spectra determined from both Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements as well as temperatures from European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses. Peak values of total Kelvin wave zonal wind forcing found are about 0.2 m/s/day. There is good agreement between SABER and ECMWF results. Altitude-time cross sections are shown and the results are compared to the total wave forcing required to balance the background atmosphere. Sometimes Kelvin wave forcing is sufficient to explain almost the whole total wave forcing required for the momentum balance during the transition from QBO easterly to westerly winds. This is especially the case during the periods of strong westerly wind shear when the zonal wind is between −20 and 10 m/s at the equator in the altitude range 20 to 35 km. During other parts of the phases of strong westerly wind shear, however, the contribution of Kelvin waves can be comparably low and the missing wave forcing, which is often attributed to mesoscale gravity waves or intermediate scale waves, can be the by far dominant contribution of the QBO forcing. It is also found that seasonal variations of Kelvin wave accelerations could play an important role for the maintenance of the QBO westerly wind jets in the lower stratosphere

    The benefit of limb cloud imaging for infrared limb sounding of tropospheric trace gases

    Get PDF
    Advances in detector technology enable a new generation of infrared limb sounders to measure 2-D images of the atmosphere. A proposed limb cloud imager (LCI) mode will detect clouds with a spatial resolution unprecedented for limb sounding. For the inference of temperature and trace gas distributions, detector pixels of the LCI have to be combined into super-pixels which provide the required signal-to-noise and information content for the retrievals. This study examines the extent to which tropospheric coverage can be improved in comparison to limb sounding using a fixed field of view with the size of the super-pixels, as in conventional limb sounders. The study is based on cloud topographies derived from (a) IR brightness temperatures (BT) of geostationary weather satellites in conjunction with ECMWF temperature profiles and (b) ice and liquid water content data of the Consortium for Small-scale Modeling-Europe (COSMO-EU) of the German Weather Service. Limb cloud images are simulated by matching the cloud topography with the limb sounding line of sight (LOS). The analysis of the BT data shows that the reduction of the spatial sampling along the track has hardly any effect on the gain in information. The comparison between BT and COSMO-EU data identifies the strength of both data sets, which are the representation of the horizontal cloud extent for the BT data and the reproduction of the cloud amount for the COSMO-EU data. The results of the analysis of both data sets show the great advantage of the cloud imager. However, because both cloud data sets do not present the complete fine structure of the real cloud fields in the atmosphere it is assumed that the results tend to underestimate the increase in information. In conclusion, real measurements by such an instrument may result in an even higher benefit for tropospheric limb retrievals

    Oblique Propagation and Refraction of Gravity Waves Over the Andes Observed by GLORIA and ALIMA During the SouthTRAC Campaign

    Get PDF
    Gravity waves (GW) carry energy and momentum from the troposphere to the middle atmosphere and have a strong influence on the circulation there. Global atmospheric models cannot fully resolve GWs, and therefore rely on highly simplified GW parametrizations that, among other limitations, account for vertical wave propagation only and neglect refraction. This is a major source of uncertainty in models, and leads to well-known problems, such as the late break-up of polar vortex due to the “missing” GW drag around 60°S. To investigate these phenomena, GW observations over Southern Andes were performed during SouthTRAC aircraft campaign. This paper presents measurements from a SouthTRAC flight on 21 September 2019, including 3-D tomographic temperature data of the infrared limb imager GLORIA (8–15 km altitude) and temperature profiles of the ALIMA lidar (20–80 km altitude). GLORIA observations revealed multiple overlapping waves of different wavelengths. 3-D wave vectors were determined from the GLORIA data and used to initialize a GW ray-tracer. The ray-traced GW parameters were compared with ALIMA observations, showing good agreement between the instruments and direct evidence of oblique (partly meridional) GW propagation. ALIMA data analysis confirmed that most waves at 25–40 km altitudes were indeed orographic GWs, including waves seemingly upstream of the Andes. We directly observed horizontal GW refraction, which has not been achieved before SouthTRAC. Refraction and oblique propagation caused significant meridional transport of horizontal momentum as well as horizontal momentum exchange between waves and the background flow all along the wave paths, not just in wave excitation and breaking regions

    Implementation of the Warner-McIntyre scheme of gravity wave parametrization into COMMA-LIM - part 1, code transfer

    Get PDF
    Ein neues Schema für die Parametrisierung der Schwerewellen und ihres Einflusses auf die mittlere Atmosphäre ist für COMMA-LIM (COlogne Model of the Middle Atmosphere - Leipzig Institute for Meteorology) übernommen worden. Während das bisher in COMMA-LIM genutzte aktualisierte Lindzen-Schema (Lindzen, 1981) die Ausbreitung und das Brechen einzelner Wellen berechnet, geht das Warner und McIntyre-Schema von einem Spektrum der Schwerewellen aus. Beide Schemata gehen von Schwerewellen im mittleren Frequenzbereich zwischen Brunt-Väisäla Frequenz und Rotationsrate der Erde aus (N >> ω >> f). Erste Ergebnisse werden vorgestellt.A new scheme for the parametrizing of the gravity waves and their impact on the mean circulation of the middle atmosphere has been adapted to COMMA-LIM (COlogne Model of the Middle Atmosphere - Leipzig Institute for Meteorology). The current version based on the Lindzen-scheme (Lindzen, 1981) calculates the propagation and breaking of 48 single waves while the new Warner and McIntyre - scheme uses a spectral approach of gravity waves. Both schemes are based on the medium frequency approach locating the gravity waves between the Brunt-Väisälä-frequency and the rotation rate of the earth ((N >> ω >> f). First results are presented

    Towards a 3-D tomographic retrieval for the air-borne limb-imager GLORIA

    Get PDF
    GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is a new remote sensing instrument essentially combining a Fourier transform infrared spectrometer with a two-dimensional (2-D) detector array in combination with a highly flexible gimbal mount. It will be housed in the belly pod of the German research aircraft HALO (High Altitude and Long Range Research Aircraft). It is unique in its combination of high spatial and state-of-the art spectral resolution. Furthermore, the horizontal view angle with respect to the aircraft flight direction can be varied from 45° to 135°. This allows for tomographic measurements of mesoscale events for a wide variety of atmospheric constituents. <br><br> In this paper, a tomographic retrieval scheme is presented, which is able to fully exploit the manifold radiance observations of the GLORIA limb sounder. The algorithm is optimized for massive 3-D retrievals of several hundred thousands of measurements and atmospheric constituents on common hardware. The new scheme is used to explore the capabilities of GLORIA to sound the atmosphere in full 3-D with respect to the choice of the flightpath and to different measurement modes of the instrument using ozone as a test species. It is demonstrated that the achievable resolution should approach 200 m vertically and 20 km–30 km horizontally. Finally, a comparison of the 3-D inversion with conventional 1-D inversions using the assumption of a horizontally homogeneous atmosphere is performed

    Driving of the SAO by gravity waves as observed from satellite

    Get PDF

    Limited angle tomography of mesoscale gravity waves by the infrared limb-sounder GLORIA

    Get PDF
    Three-dimensional measurements of gravity waves are required in order to quantify their direction-resolved momentum fluxes and obtain a better understanding of their propagation characteristics. Such 3-D measurements of gravity waves in the lowermost stratosphere have been provided by the airborne Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) using full angle tomography. Closed flight patterns of sufficient size are needed to acquire the full set of angular measurements for full angle tomography. These take about 2&thinsp;h and are not feasible everywhere due to scientific reasons or air traffic control restrictions. Hence, this paper investigates the usability of limited angle tomography for gravity wave research based on synthetic observations. Limited angle tomography uses only a limited set of angles for tomographic reconstruction and can be applied to linear flight patterns. A synthetic end-to-end simulation has been performed to investigate the sensitivity of limited angle tomography to gravity waves with different wavelengths and orientations with respect to the flight path. For waves with wavefronts roughly perpendicular to the flight path, limited angle tomography and full angle tomography can derive wave parameters like wavelength, amplitude, and wave orientation with similar accuracy. For waves with a horizontal wavelength above 200&thinsp;km and vertical wavelength above 3&thinsp;km, the wavelengths can be retrieved with less than 10&thinsp;% error, the amplitude with less than 20&thinsp;% error, and the horizontal wave direction with an error below 10°. This is confirmed by a comparison of results obtained from full angle tomography and limited angle tomography for real measurements taken on 25 January 2016 over Iceland. The reproduction quality of gravity wave parameters with limited angle tomography, however, depends strongly on the orientation of the waves with respect to the flight path. Thus, full angle tomography might be preferable in cases in which the orientation of the wave cannot be predicted or waves with different orientations exist in the same volume and thus the flight path cannot be adjusted accordingly. Also, for low-amplitude waves and short-scale waves full angle tomography has advantages due to its slightly higher resolution and accuracy.</p
    • …
    corecore