90 research outputs found

    Messenger RNA electroporation: an efficient tool in immunotherapy and stem cell research.

    Get PDF
    Over the last decades medicine has developed tremendously, but still many diseases are incurable. The last years, cellular (gene) therapy has become a hot topic in biomedical research for the potential treatment of cancer, AIDS and diseases involving cell loss or degeneration. Here, we will focus on two major areas within cellular therapy, cellular immunotherapy and stem cell therapy, that could benefit from the introduction of neo-expressed genes through mRNA electroporation for basic research as well as for clinical applications. For cellular immunotherapy, we will provide a state-of-the-art on loading antigen-presenting cells with antigens in the mRNA format for manipulation of T cell immunity. In the area of stem cell research, we will highlight current gene transfer methods into adult and embryonic stem cells and discuss the use of mRNA electroporation for controlling guided differentiation of stem cells into specialized cell lineages

    Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl

    Get PDF
    Antiapoptotic B-cell lymphoma 2 (Bcl-2) targets the inositol 1,4,5-trisphosphate receptor (IP3R) via its BH4 domain, thereby suppressing IP3R Ca2+-flux properties and protecting against Ca2+-dependent apoptosis. Here, we directly compared IP3R inhibition by BH4-Bcl-2 and BH4-Bcl-Xl. In contrast to BH4-Bcl-2, BH4-Bcl-Xl neither bound the modulatory domain of IP3R nor inhibited IP3-induced Ca2+ release (IICR) in permeabilized and intact cells. We identified a critical residue in BH4-Bcl-2 (Lys17) not conserved in BH4-Bcl-Xl (Asp11). Changing Lys17 into Asp in BH4-Bcl-2 completely abolished its IP3R-binding and -inhibitory properties, whereas changing Asp11 into Lys in BH4-Bcl-Xl induced IP3R binding and inhibition. This difference in IP3R regulation between BH4-Bcl-2 and BH4-Bcl-Xl controls their antiapoptotic action. Although both BH4-Bcl-2 and BH4-Bcl-Xl had antiapoptotic activity, BH4-Bcl-2 was more potent than BH4-Bcl-Xl. The effect of BH4-Bcl-2, but not of BH4-Bcl-Xl, depended on its binding to IP(3)Rs. In agreement with the IP3R-binding properties, the antiapoptotic activity of BH4-Bcl-2 and BH4-Bcl-Xl was modulated by the Lys/Asp substitutions. Changing Lys17 into Asp in full-length Bcl-2 significantly decreased its binding to the IP3R, its ability to inhibit IICR and its protection against apoptotic stimuli. A single amino-acid difference between BH4-Bcl-2 and BH4-Bcl-Xl therefore underlies differential regulation of IP(3)Rs and Ca2+-driven apoptosis by these functional domains. Mutating this residue affects the function of Bcl-2 in Ca2+ signaling and apoptosis

    Comparison of Gene-Transfer Efficiency in Human Embryonic Stem Cells

    Get PDF
    Technologies designed to allow manipulation and modification of human embryonic stem (hES) cells are numerous and vary in the complexity of their methods, efficiency, reliability, and safety. The most commonly studied and practiced of these methods include electroporation, lipofection, nucleofection, and lentiviral transduction. However, at present, it is unclear which protocol offers the most efficient and reliable method of gene transfer to hES cells. In this study, a bi-fusion construct with ubiquitin promoter driving enhanced green fluorescent protein reporter and the firefly luciferase (pUb-eGFP-Fluc) along with neomycin selection marker was used for in vitro and in vivo studies. In vitro studies examined the transfection efficiency and viability of each technique using two hES cell lines (male H1 and female H9 cells). Lentiviral transduction demonstrated the highest efficiency (H1: 25.3 ± 4.8%; H9: 22.4 ± 6.5%) with >95% cell viability. Nucleofection demonstrated transfection efficiency of 16.1 ± 3.6% (H1) and 5.8 ± 3.2% (H9). However, minimal transfection efficiency was observed with electroporation (2.1 ± 0.4% (H1) and 1.9 ± 0.3% (H9)) and lipofection (1.5 ± 0.5% (H1) and 1.3 ± 0.2% (H9); P < 0.05 vs. lentiviral transduction). Electroporation also demonstrated the highest cell death (62 ± 11% (H1) and 42 ± 10% (H9)) followed by nucleofection (25 ± 9% (H1) and 30 ± 15 (H9)). Importantly, lentiviral transduction generated a greater number of hES cell lines stably expressing the double-fusion reporter gene (hES-DF) compared to other transfection techniques. Finally, following subcutaneous transplantation into immunodeficient nude mice, the hES-eGFP-Fluc cells showed robust proliferation as determined by longitudinal bioluminescence imaging. In summary, this study demonstrates that lentiviral transduction and nucleofection are efficient, simple, and safe techniques for reliable gene transfer in hES cells. The double-fusion construct provides an attractive approach for generating stable hES cell lines and monitoring engraftment and proliferation in vitro and in vivo

    Neuroglobin Expression Models as a Tool to Study Its Function

    No full text
    status: publishe

    Thrombin inhibits intercellular calcium wave propagation in corneal endothelial cells by modulation of hemichannels and gap junctions

    No full text
    PURPOSE. Thrombin, a serine protease, breaks down the barrier integrity of corneal endothelial cells by phosphorylation of the regulatory light chain of myosin II (myosin light chain; MLC), which induces contractility of the actin cytoskeleton. This study was undertaken to investigate the effect of thrombin on gap junctional (GJIC) and paracrine (PIC) intercellular communication in cultured bovine corneal endothelial cells (BCECs).status: publishe
    • …
    corecore