82 research outputs found

    Sending femtosecond pulses in circles: highly non-paraxial accelerating beams

    Full text link
    We use caustic beam shaping on 100 fs pulses to experimentally generate non-paraxial accelerating beams along a 60 degree circular arc, moving laterally by 14 \mum over a 28 \mum propagation length. This is the highest degree of transverse acceleration reported to our knowledge. Using diffraction integral theory and numerical beam propagation simulations, we show that circular acceleration trajectories represent a unique class of non-paraxial diffraction-free beam profile which also preserves the femtosecond temporal structure in the vicinity of the caustic

    Efficient optical energy harvesting in self-accelerating beams

    Get PDF
    We report the experimental observation of energetically confined self-accelerating optical beams propagating along various convex trajectories. We show that, under an appropriate transverse compression of their spatial spectra, these self-accelerating beams can exhibit a dramatic enhancement of their peak intensity and a significant decrease of their transverse expansion, yet retaining both the expected acceleration profile and the intrinsic self-healing properties. We found our experimental results to be in excellent agreement with the numerical simulations. We expect further applications in such contexts where power budget and optimal spatial confinement can be important limiting factors

    Sub-space approximations for MDO problems with disparate disciplinary variable dependence

    Get PDF
    The research leading to these results have been funded by the European Union Seventh Framework Programme FP7-PEOPLE-2012-ITN under grant agreement 316394, Aerospace Multidisciplinarity Enabling DEsign Optimization (AMEDEO) Marie Curie Initial Training Network

    Optical nanofibers and spectroscopy

    Full text link
    We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist or of the medium surrounding. We use a carefully designed flame pulling process that allows us to realize preset fiber diameter profiles. In order to determine the waist diameter and to verify the fiber profile, we employ scanning electron microscope measurements and a novel accurate in situ optical method based on harmonic generation. We use our fibers for linear and non-linear absorption and fluorescence spectroscopy of surface-adsorbed organic molecules and investigate their agglomeration dynamics. Furthermore, we apply our spectroscopic method to quantum dots on the surface of the fiber waist and to caesium vapor surrounding the fiber. Finally, towards dispersive measurements, we present our first results on building and testing a single-fiber bi-modal interferometer.Comment: 13 pages, 18 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: changed title, clarification of some points in the text, added references, replacement of Figure 13

    On the asymptotic evolution of finite energy Airy wavefunctions

    Get PDF
    In general, there is an inverse relation between the degree of localization of a wavefunction of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wavepackets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyse the asymptotic properties of finite energy Airy wavefunctions using the stationary phase method. We obtain one dominant contribution to the long term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased

    Generation of Fiber Tunable High-power Picosecond Laser Pulse

    No full text
    • …
    corecore