92 research outputs found

    Room temperature spin relaxation in GaAs/AlGaAs multiple quantum wells

    Get PDF
    We have explored the dependence of electron spin relaxation in undoped GaAs/AlGaAs quantum wells on well width (confinement energy) at 300 K. For wide wells, the relaxation rate tends to the intrinsic bulk value due to the D'yakonov-Perel (DP) mechanism with momentum scattering by phonons. In narrower wells, there is a strong dependence of relaxation rate on well width, as expected for the DP mechanism, but also considerable variation between samples from different sources, which we attribute to differences in sample interface morphology. (C) 1998 American Institute of Physics. [S0003-6951(98)02541-8].</p

    Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP reductase, a crucial enzyme in fatty acid biosynthesis

    Get PDF
    Anti-plasmodial activity-guided fractionation of Phlomis brunneogaleata (Lamiaceae) led to the isolation of two new metabolites, the iridoid glycoside, brunneogaleatoside and a new pyrrolidinium derivative (2S,4R)-2-carboxy-4-(E)-p-coumaroyloxy-1,1-dimethylpyrrolidinium inner salt [(2S,4R)-1,1-dimethyl-4-(E)-p-coumaroyloxyproline inner salt]. Moreover, a known iridoid glycoside, ipolamiide, six known phenylethanoid glycosides, verbascoside, isoverbascoside, forsythoside B, echinacoside, glucopyranosyl-(1→Gi-6)-martynoside and integrifolioside B, two flavone glycosides, luteolin 7-O-β-D-glucopyranoside (10) and chrysoeriol 7-O-β-D-glucopyranoside (11), a lignan glycoside liriodendrin, an acetophenone glycoside 4-hydroxyacetophenone 4-O-(6′-O-β-D-apiofuranosyl)-β-D-glucopyranoside and three caffeic acid esters, chlorogenic acid, 3-O-caffeoylquinic acid methyl ester and 5-O-caffeoylshikimic acid were isolated. The structures of the pure compounds were elucidated by means of spectroscopic methods (UV, IR, MS, 1D and 2D NMR, [α]D) and X-ray crystallography. Compounds 10 and 11 were determined to be the major anti-malarial principles of the crude extract (IC50 values of 2.4 and 5.9 μg/mL, respectively). They also exhibited significant leishmanicidal activity (IC50 = 1.1 and 4.1 μg/mL, respectively). The inhibitory potential of the pure metabolites against plasmodial enoyl-ACP reductase (FabI), which is the key regulator of type II fatty acid synthases (FAS-II) in P. falciparum, was also assessed. Compound 10 showed promising FabI inhibiting effect (IC50 = 10 μg/mL) and appears to be the first anti-malarial natural product targeting FabI of P. falciparum

    Nanoscale Mobility of the Apo State and TARP Stoichiometry Dictate the Gating Behavior of Alternatively Spliced AMPA Receptors.

    Get PDF
    Neurotransmitter-gated ion channels are allosteric proteins that switch on and off in response to agonist binding. Most studies have focused on the agonist-bound, activated channel while assigning a lesser role to the apo or resting state. Here, we show that nanoscale mobility of resting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPA receptors) predetermines responsiveness to neurotransmitter, allosteric anions and TARP auxiliary subunits. Mobility at rest is regulated by alternative splicing of the flip/flop cassette of the ligand-binding domain, which controls motions in the distant AMPA receptor N-terminal domain (NTD). Flip variants promote moderate NTD movement, which establishes slower channel desensitization and robust regulation by anions and auxiliary subunits. In contrast, greater NTD mobility imparted by the flop cassette acts as a master switch to override allosteric regulation. In AMPA receptor heteromers, TARP stoichiometry further modifies these actions of the flip/flop cassette generating two functionally distinct classes of partially and fully TARPed receptors typical of cerebellar stellate and Purkinje cells

    Development of a triclosan scaffold which allows for adaptations on both the A- and B-ring for transport peptides

    Get PDF
    The enoyl acyl-carrier protein reductase (ENR) enzyme is harbored within the apicoplast of apicomplexan parasites providing a significant challenge for drug delivery, which may be overcome through the addition of transductive peptides, which facilitates crossing the apicoplast membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan analogs with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future attachment of molecular transporters for delivery

    Crystal Structures of T. b. rhodesiense Adenosine Kinase Complexed with Inhibitor and Activator: Implications for Catalysis and Hyperactivation

    Get PDF
    Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) and its derivatives exhibit specific antitrypanosomal activity toward T. b. rhodesiense, the causative agent of the acute form of HAT. We found that compound 1 would target the parasite adenosine kinase (TbrAK), an important enzyme of the purine salvage pathway, by acting via hyperactivation of the enzyme. This represents a novel and hitherto unexplored strategy for the development of trypanocides. These findings prompted us to investigate the mechanism of action at the molecular level. The present study reports the first three-dimensional crystal structures of TbrAK in complex with the bisubstrate inhibitor AP5A, and in complex with the activator (compound 1). The subsequent structural analysis sheds light on substrate and activator binding, and gives insight into the possible mechanism leading to hyperactivation. Further structure-activity relationships in terms of TbrAK activation properties support the observed binding mode of compound 1 in the crystal structure and may open the field for subsequent optimization of this compound series

    Mental turmoil, suicide risk, illness perception, and temperament, and their impact on quality of life in chronic daily headache

    Get PDF
    To evaluate the relationship among quality of life, temperament, illness perception, and mental turmoil in patients affected by chronic daily headache with concomitant medication overuse headache. Participants were 116 consecutive adult outpatients admitted to the Department of General Medicine of the Sant’Andrea Hospital in Rome, between January 2007 and December 2007 with a diagnosis of chronic daily headache (illness duration >5 years). Patients were administered the Temperament Evaluation of Memphis, Pisa, Paris and San Diego-autoquestionnaire version (TEMPS-A), the Beck Hopelessness Scale (BHS), the Hamilton Rating Scale for Depression (HAM-D), the Mini-International Neuropsychiatric Interview (MINI), the Revised Illness Perception Questionnaire (IPQ), the Suicide Score Scale (SSS), and the Quality of Life Index (QL-Index). Twenty-eight percent of the patients evidenced moderate to severe depression, and 35% evidenced severe hopelessness. Analyses also indicated that quality of life, temperament, illness perception, and psychological turmoil are associated. However, a hierarchical multivariate regression analysis with quality of life as dependent variable indicated that only a model with mental turmoil variables may fit data; further, only the MINI suicidal intent resulted associated with quality of life (standardized regression coefficient = −0.55; t = −3.06; P < 0.01). Suicide risk may play a central role in affecting the quality of life of patients with chronic headache. The investigation of the interplay of factors that precipitate suicide risk should include assessment of chronic headache and its effects on wellbeing
    corecore