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Room temperature spin relaxation in GaAs/AlGaAs multiple quantum wells
R. S. Britton, T. Grevatt, A. Malinowski, and R. T. Harleya)

Department of Physics, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

P. Perozzo, A. R. Cameron, and A. Miller
Department of Physics, University of St. Andrews, Fife, United Kingdom

~Received 20 May 1998; accepted for publication 9 August 1998!

We have explored the dependence of electron spin relaxation in undoped GaAs/AlGaAs quantum
wells on well width~confinement energy! at 300 K. For wide wells, the relaxation rate tends to the
intrinsic bulk value due to the D’yakonov–Perel~DP! mechanism with momentum scattering by
phonons. In narrower wells, there is a strong dependence of relaxation rate on well width, as
expected for the DP mechanism, but also considerable variation between samples from different
sources, which we attribute to differences in sample interface morphology. ©1998 American
Institute of Physics.@S0003-6951~98!02541-8#

The mechanisms of carrier spin relaxation in quantum-
confined semiconductor systems are of interest, in part be-
cause of the possible applications of polarization selective
optical nonlinearities,1 and also because it frequently occurs
under ‘‘motional narrowing’’ conditions,2 so that the spin-
relaxation rate is proportional to the momentum relaxation
time, in which case spin relaxation is fastest in the best qual-
ity materials. Another reason for interest is the very slow
~;1 ns! room temperature electron spin relaxation recently
observed inn-type Zn0.8Cd0.2Se quantum wells.3 Spin relax-
ation of resonantly excitedn51 heavy-hole excitons,4

holes,5 and electrons6 in GaAs/AlGaAs quantum wells has
been systematically investigated at low temperatures. How-
ever, there has been relatively little systematic investigation
at room or intermediate temperatures.7,8 In this letter we in-
vestigate the dependence of the room temperature electron
spin relaxation rate on confinement energy in samples with
different thicknesses. Such measurements require careful in-
terpretation because of possible variations due to sample
imperfections.9 We therefore compare results from a variety
of molecular beam epitaxy~MBE!-grown samples studied by
ourselves and published previously.7

All the samples were grown on~100!-oriented substrates
and were without intentional doping. In each case a spin-
polarized population of photogenerated carriers was pro-
duced by a circular polarized optical pump pulse at then
51 exciton resonance, and the evolution of the spin orienta-
tion and population were examined via induced nonlinear
changes in absorption or reflection of a degenerate, delayed
probe pulse. We use here the standard definition of spin re-
laxation timets ,2 as the characteristic decay time for the
population difference of spin-up and spin-down states. This
differs by a factor of 2 from the definition used in Ref. 7.

For our experiments both the pump and probe were de-
rived from a mode-locked Ti:sapphire laser with pulse dura-
tion ;1 ps, giving pump excitation density;1010 cm22 and
probe intensity;1022 that of the pump. Reflection measure-
ments carried out at Southampton~see Fig. 1! employed a
modulation method to determine simultaneously the pump-

induced difference in reflectivity for left and right circularly
polarized light ~the ‘‘difference’’ signal! and the pump-
induced change in total reflectivity~the ‘‘sum’’ signal!.10

Transmission measurements made at St. Andrews11,12 em-
ployed an etched window in the substrate and involved a
sequence of two runs with the probe beam similarly circu-
larly polarized ~SCP! and oppositly circularly polarized
~OCP! to the pump. A third run was made with pump and
probe beams having orthogonal linear polarizations~OLP!.
In the two techniques the ‘‘sum’’ and OLP signals indicate
the total population of photoexcited carriers, while the ‘‘dif-
ference’’ and SCP and OCP traces indicate the evolution of
spin alignment.

Details of our samples appear in Table I, which includes
the low temperature photoluminescence~PL! linewidth and
Stokes shift as some measure of sample quality. Residual
doping levels were;231014 cm23 p type except in
KLB269 for which it was;1016 cm23 p type. With the ex-
ception of GWS196 all samples were multiple quantum
wells with at least 15 repeats and barrier thicknesses greater

a!Electronic mail: rth@orc.soton.ac.uk

FIG. 1. Time dependence of pump-induced change in reflectivity~‘‘sum’’ !
and spin alignment~‘‘difference’’ ! for sample G51, pumped at then51
exciton resonance.
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than 100 Å; GWS196 contained three separate quantum
wells of different width, the central one being studied here.
The electron mobilities of two samples, S51 and KLB269,
were measured11,12 to be 0.46 and 0.48 m2 V21 s21, respec-
tively, and may be compared with the value for high purity
bulk material of be 0.85 m2 V21 s21 at 300 K.

For both reflection and transmission measurements the
pulse repetition frequency was about 70 MHz. Carrier life-
time at room temperature is up to 70 ns12 in our samples,
considerably greater than the interpulse spacing~;14 ns!, so
that the experiments were made with a significant ambient
population of photoexcited electrons and holes. We estimate
this to be <1011 cm22 ~i.e., <1017 cm23). Preliminary
transmission measurements on samples with a 7 MHz repeti-
tion frequency, and therefore with greatly reduced ambient
background, gave the same spin-relaxation rates, within ex-
perimental error, indicating that spin relaxation is not
strongly dependent on the ambient population.

At room temperature thermal dissociation of excitons to
free electrons and holes takes place on a timescale of order

300 fs.13 It has been observed that hole-spin relaxation takes
place on a subpicosecond timescale in type II multi quantum
well ~MQW! at room temperature,14 and we expect it to be
similar in our type I samples. Hence, the slower decays ob-
served in Fig. 1 and in Ref. 12 the ‘‘difference,’’ SCP and
OCP traces may be attributed to electron spin relaxation.

In Fig. 2 we show extracted values of spin relaxation
rate (ts

21) against electron confinement energyE1e . The
values forts

21 were obtained by fitting single exponential
functions to the tails of the ‘‘difference’’ or SCP-OCP
graphs. This gives the spin-relaxation rate directly because
electron recombination is much slower than the spin relax-
ation, and hence will not significantly affect the observed
decay rate. The slow recombination time is indicated by the
step-like behavior of the ‘‘sum’’~Fig. 1! and OLP11,12 sig-
nals. The values ofE1e were calculated using the effective
mass approximation, assuming a conduction to valence band
offset ratio of 57:43 and making allowance for variations of
Al content of the barriers. Also included in Fig. 2 are data
from Tackeuchiet al.7

Three mechanisms can contribute to the electron spin
relaxation in bulk material; these are due to Bir, Aharonov,
and Pikus~BAP!, Elliott and Yafet~EY!, and D’yakonov and
Perel~DP!.2 The EY mechanism arises out of spin-orbit in-
teraction and is unlikely to be significant due to the weak
spin-orbit coupling of the conduction band.15 The BAP
mechanism comes from interaction of the electron spins with
a population of unpolarized holes via exchange interaction,
and is generally only significant in stronglyp-type samples
above a certain threshold concentration which increases with
temperature and is of the order 1018 cm23 in bulk GaAs at
300 K.2 Our samples are undoped but in principle this
mechanism might be important since our measurements are
made in the presence of a background of photoexcited elec-
trons and holes. However, the low-repetition-rate experi-
ments on a selection of our samples clearly show that the
background population has little or no effect on the spin
relaxation, and furthermore the estimated ambient hole popu-
lation is below the bulk threshold, so we do not believe that
the BAP mechanism is significant in our measurements.
Consequently we expect the~DP! interaction discussed be-
low to be dominant at room temperature.

The DP mechanism in a zincblende structure semicon-
ductor results from the lack of inversion symmetry and the
spin-orbit coupling which gives ak-dependent splitting be-
tween the spin components of the conduction band fork
Þ0. The splitting can be regarded as an effective magnetic
field acting on electron spin, leading to precession of the
spin. Momentum scattering events cause fluctuations in this
magnetic field, on a timescale fast compared to the spin pre-
cession so that spin reorientation occurs in many small ran-
dom steps and is much slower than the precession period.
This ‘‘motional narrowing’’ situation gives a spin relaxation
rate proportional to the momentum relaxation time (tp). In
bulk material the electron spin relaxation rate due to the DP
mechanism is given by2,16

1

ts
5Aac

2tp

~kBT!3

\2Eg
, ~1!

where A is a numerical factor dependent on the scattering

FIG. 2. Spin relaxation rate vs confinement energy for all samples investi-
gated here~solid symbols! and from the work of Tackeuchiet al. ~Ref. 7!
~open symbols!. The latter are increased32 relative to the published values
to conform to the standard definition of spin-relaxation rate~Ref. 2!.

TABLE I. Characteristics of GaAs/AlGaAs MQW samples. PL Stokes shift
and PL width are photoluminescence characteristics measured atT,10 K.

Samples
Well width

~Å!
Al

fraction

Pl
Stokes
shift

~meV!

PL
Width
~meV!
FWHM

G50 25.7 0.36 6.0 8.0
G51 73.4 0.35 1.5 2.20
G52 149 0.36 ;0 1.1
G55 112.5 0.36 0.8 1.40
G57 56.0 0.36 3.0 3.0

GWS196 102 0.33 0.2 0.7
S51 44 0.33

KLB269 65 0.4 9 11
G1273 80 0.3
FK141 90 0.2

2141Appl. Phys. Lett., Vol. 73, No. 15, 12 October 1998 Britton et al.
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mechanism causing momentum relaxation,ac is a parameter
related to the spin splitting of the conduction band, andEg is
the band-gap energy. In quantum wells, for electron confine-
ment energyE1e@kBT, and for relaxation of the spin com-
ponent along the growth direction in a~100!-oriented
sample, the rate becomes17

1

ts
5Bac

2tp

E1e
2 kBT

\2Eg
, ~2!

where B'A. In high purity and moderately dopedp-type
bulk GaAs at room temperaturetp is determined by phonon
scattering, and published measurements2,15 on a variety of
samples have given a common value ofts

21 ~bulk! ;1.3
31010 s21. This value is in agreement with the theoretical
estimates based on the DP mechanism, Eq.~1!. If phonon
scattering, which is not strongly well width dependent,18 re-
mained the dominant mechanism in our quantum well
samples we would expect from Eq.~2! to find, for E1e

@kBT, that

ts
21~QW!'

E1e
2

~kBT!2 ts
21~bulk!. ~3!

The presence of additional scattering mechanisms in the
quantum wells will tend to reducets

21 ~QW! below this
theoretical maximum.

The data in Fig. 2 converge on a value ofts
21 between

131010 and 231010 s21 for low E1e , in good agreement
with the bulk value. For higherE1e , ts

21 does follow a gen-
erally quadratic dependence in accordance with Eq.~2!, but
there is a fairly large spread, and indeed all the points lie a
factor of 2 or more below the ideal upper limit suggested by
Eq. ~3!. Thus it is clear that additional scattering mechanisms
in the quantum wells play a significant role. The spread in
the data is somewhat reduced if we concentrate on the two
particular subsets of the data which we might expect to have
similar strength for the additional momentum relaxation.
Tackeuchiet al.’s data~open symbols! come from two dif-
ferent wafers where the well thickness varied across the wa-
fer. The two sets of three points were each found to fit curves
of the form ts

215b3E1e
g , where g52.2,7 and taken to-

gether the two sets show an approximately parabolic depen-
dence onE1e . Similarly, the G-series samples~solid circles!
appear to follow a smooth parabolic trend except for the
point at highestE1e . As a further test of Eq.~2! our mea-
surements of mobility for KLB269 and S51 give values oftp

of 1.83310213 and 1.75310213 s, respectively. Using these
values we obtain Bac

2\2251.43103 and 1.23103

eV22 ps22, respectively, which are in reasonable agreement
with each other, as required by the theory, Eq.~2!.

We conclude that the behavior of the spin-relaxation rate
in these samples is consistent with the dominance of the DP
mechanism, and that momentum relaxation mechanisms in
addition to optical phonon scattering are important in these
QWs. These mechanisms are sample dependent, but allow
clear quadratic behavior withE1e to be observed for samples
from common growth runs, as suggested by the theoretical
expressions for constant momentum relaxation rate. MBE-
grown material is generally of high quality, with very low
point defect concentration and in this case the wells are pure
GaAs, so it is natural to conclude that while phonon scatter-

ing is still dominant, scattering by interface roughness in the
structures is important and that variations in interface mor-
phology cause the significant differences between samples
from different growth runs having a given value ofE1e . The
strong deviation of the narrowest of our samples from a para-
bolic dependence onE1e suggests that mobility is strongly
reduced in the narrowest quantum wells, perhaps due to the
increasing importance of interface roughness scattering in
narrow wells.

Finally we point out that the very long relaxation times
of electrons inn-type Zn0.8Cd0.2Se quantum wells and ZnSe
epilayers3 are also consistent with the DP mechanism, taking
into account the much lower mobilities of these materials.19

For example, to scale the spin-relaxation time of sample
KLB269 to 1 ns would require a change of mobility to the
order of 0.02 m2 V21 s21 which would be reasonable for
these doped II–VI materials.

The authors would like to thank C. T. B. Foxon, Philips
Research Laboratories, Redhill~G series, KLB269!; G. W.
Smith, DERA, Malvern ~GWS196!; T. Brennan and G.
Hammons, USAF Philips Laboratory~FK141!; P. Cook, US
Army Research Laboratory, New Jersey~G1273!; and Sharp
Laboratories, Oxford~S51! for the samples examined in this
work.
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