96 research outputs found
Regularization of moving boundaries in a Laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results
The dynamics of ionization fronts that generate a conducting body, are in
simplest approximation equivalent to viscous fingering without regularization.
Going beyond this approximation, we suggest that ionization fronts can be
modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact
uniformly propagating solutions of this problem in 2D and construct a single
partial differential equation governing small perturbations of these solutions.
For some parameter value, this equation can be solved analytically which shows
that the uniformly propagating solution is linearly convectively stable.Comment: 4 pages, 1 figur
Interface growth in two dimensions: A Loewner-equation approach
The problem of Laplacian growth in two dimensions is considered within the
Loewner-equation framework. Initially the problem of fingered growth recently
discussed by Gubiec and Szymczak [T. Gubiec and P. Szymczak, Phys. Rev. E 77,
041602 (2008)] is revisited and a new exact solution for a three-finger
configuration is reported. Then a general class of growth models for an
interface growing in the upper-half plane is introduced and the corresponding
Loewner equation for the problem is derived. Several examples are given
including interfaces with one or more tips as well as multiple growing
interfaces. A generalization of our interface growth model in terms of
``Loewner domains,'' where the growth rule is specified by a time evolving
measure, is briefly discussed.Comment: To appear in Physical Review
Morphological stability of electromigration-driven vacancy islands
The electromigration-induced shape evolution of two-dimensional vacancy
islands on a crystal surface is studied using a continuum approach. We consider
the regime where mass transport is restricted to terrace diffusion in the
interior of the island. In the limit of fast attachment/detachment kinetics a
circle translating at constant velocity is a stationary solution of the
problem. In contrast to earlier work [O. Pierre-Louis and T.L. Einstein, Phys.
Rev. B 62, 13697 (2000)] we show that the circular solution remains linearly
stable for arbitrarily large driving forces. The numerical solution of the full
nonlinear problem nevertheless reveals a fingering instability at the trailing
end of the island, which develops from finite amplitude perturbations and
eventually leads to pinch-off. Relaxing the condition of instantaneous
attachment/detachment kinetics, we obtain non-circular elongated stationary
shapes in an analytic approximation which compares favorably to the full
numerical solution.Comment: 12 page
Theory and computation of directional nematic phase ordering
A computational study of morphological instabilities of a two-dimensional
nematic front under directional growth was performed using a Landau-de Gennes
type quadrupolar tensor order parameter model for the first-order
isotropic/nematic transition of 5CB (pentyl-cyanobiphenyl). A previously
derived energy balance, taking anisotropy into account, was utilized to account
for latent heat and an imposed morphological gradient in the time-dependent
model. Simulations were performed using an initially homeotropic
isotropic/nematic interface. Thermal instabilities in both the linear and
non-linear regimes were observed and compared to past experimental and
theoretical observations. A sharp-interface model for the study of linear
morphological instabilities, taking into account additional complexity
resulting from liquid crystalline order, was derived. Results from the
sharp-interface model were compared to those from full two-dimensional
simulation identifying the specific limitations of simplified sharp-interface
models for this liquid crystal system. In the nonlinear regime, secondary
instabilities were observed to result in the formation of defects, interfacial
heterogeneities, and bulk texture dynamics.Comment: first revisio
Interface growth in the channel geometry and tripolar Loewner evolutions
A class of Laplacian growth models in the channel geometry is studied using
the formalism of tripolar Loewner evolutions, in which three points, namely,
the channel corners and infinity, are kept fixed. Initially, the problem of
fingered growth, where growth takes place only at the tips of slit-like
fingers, is revisited and a class of exact exact solutions of the corresponding
Loewner equation is presented for the case of stationary driving functions. A
model for interface growth is then formulated in terms of a generalized
tripolar Loewner equation and several examples are presented, including
interfaces with multiple tips as well as multiple growing interfaces. The model
exhibits interesting dynamical features, such as tip and finger competition.Comment: 9 pages, 11 figure
Model Flames in the Boussinesq Limit: The Effects of Feedback
We have studied the fully nonlinear behavior of pre-mixed flames in a
gravitationally stratified medium, subject to the Boussinesq approximation. Key
results include the establishment of criterion for when such flames propagate
as simple planar flames; elucidation of scaling laws for the effective flame
speed; and a study of the stability properties of these flames. The simplicity
of some of our scalings results suggests that analytical work may further
advance our understandings of buoyant flames.Comment: 11 pages, 14 figures, RevTex, gzipped tar fil
Scaling Relations of Viscous Fingers in Anisotropic Hele-Shaw Cells
Viscous fingers in a channel with surface tension anisotropy are numerically
studied. Scaling relations between the tip velocity v, the tip radius and the
pressure gradient are investigated for two kinds of boundary conditions of
pressure, when v is sufficiently large. The power-law relations for the
anisotropic viscous fingers are compared with two-dimensional dendritic growth.
The exponents of the power-law relations are theoretically evaluated.Comment: 5 pages, 4 figure
The Sivashinsky equation for corrugated flames in the large-wrinkle limit
Sivashinsky's (1977) nonlinear integro-differential equation for the shape of
corrugated 1-dimensional flames is ultimately reducible to a 2N-body problem,
involving the 2N complex poles of the flame slope. Thual, Frisch & Henon (1985)
derived singular linear integral equations for the pole density in the limit of
large steady wrinkles , which they solved exactly for monocoalesced
periodic fronts of highest amplitude of wrinkling and approximately otherwise.
Here we solve those analytically for isolated crests, next for monocoalesced
then bicoalesced periodic flame patterns, whatever the (large-) amplitudes
involved. We compare the analytically predicted pole densities and flame shapes
to numerical results deduced from the pole-decomposition approach. Good
agreement is obtained, even for moderately large Ns. The results are extended
to give hints as to the dynamics of supplementary poles. Open problems are
evoked
Flame Enhancement and Quenching in Fluid Flows
We perform direct numerical simulations (DNS) of an advected scalar field
which diffuses and reacts according to a nonlinear reaction law. The objective
is to study how the bulk burning rate of the reaction is affected by an imposed
flow. In particular, we are interested in comparing the numerical results with
recently predicted analytical upper and lower bounds. We focus on reaction
enhancement and quenching phenomena for two classes of imposed model flows with
different geometries: periodic shear flow and cellular flow. We are primarily
interested in the fast advection regime. We find that the bulk burning rate v
in a shear flow satisfies v ~ a*U+b where U is the typical flow velocity and a
is a constant depending on the relationship between the oscillation length
scale of the flow and laminar front thickness. For cellular flow, we obtain v ~
U^{1/4}. We also study flame extinction (quenching) for an ignition-type
reaction law and compactly supported initial data for the scalar field. We find
that in a shear flow the flame of the size W can be typically quenched by a
flow with amplitude U ~ alpha*W. The constant alpha depends on the geometry of
the flow and tends to infinity if the flow profile has a plateau larger than a
critical size. In a cellular flow, we find that the advection strength required
for quenching is U ~ W^4 if the cell size is smaller than a critical value.Comment: 14 pages, 20 figures, revtex4, submitted to Combustion Theory and
Modellin
Interface dynamics in Hele-Shaw flows with centrifugal forces. Preventing cusp singularities with rotation
A class of exact solutions of Hele-Shaw flows without surface tension in a
rotating cell is reported. We show that the interplay between injection and
rotation modifies drastically the scenario of formation of finite-time cusp
singularities. For a subclass of solutions, we show that, for any given initial
condition, there exists a critical rotation rate above which cusp formation is
prevented. We also find an exact sufficient condition to avoid cusps
simultaneously for all initial conditions. This condition admits a simple
interpretation related to the linear stability problem.Comment: 4 pages, 2 figure
- …