120 research outputs found
A Complete Characterization of the Gap between Convexity and SOS-Convexity
Our first contribution in this paper is to prove that three natural sum of
squares (sos) based sufficient conditions for convexity of polynomials, via the
definition of convexity, its first order characterization, and its second order
characterization, are equivalent. These three equivalent algebraic conditions,
henceforth referred to as sos-convexity, can be checked by semidefinite
programming whereas deciding convexity is NP-hard. If we denote the set of
convex and sos-convex polynomials in variables of degree with
and respectively, then our main
contribution is to prove that if and
only if or or . We also present a complete
characterization for forms (homogeneous polynomials) except for the case
which is joint work with G. Blekherman and is to be published
elsewhere. Our result states that the set of convex forms in
variables of degree equals the set of sos-convex forms if
and only if or or . To prove these results, we present
in particular explicit examples of polynomials in
and
and forms in
and , and a
general procedure for constructing forms in from nonnegative but not sos forms in variables and degree .
Although for disparate reasons, the remarkable outcome is that convex
polynomials (resp. forms) are sos-convex exactly in cases where nonnegative
polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for
computer assisted proofs of the paper added to arXi
The Lax conjecture is true
In 1958 Lax conjectured that hyperbolic polynomials in three variables are
determinants of linear combinations of three symmetric matrices. This
conjecture is equivalent to a recent observation of Helton and Vinnikov.Comment: 7 pages, Proceedings to the AMS, to appear. Added background materia
Diagonal and Low-Rank Matrix Decompositions, Correlation Matrices, and Ellipsoid Fitting
In this paper we establish links between, and new results for, three problems
that are not usually considered together. The first is a matrix decomposition
problem that arises in areas such as statistical modeling and signal
processing: given a matrix formed as the sum of an unknown diagonal matrix
and an unknown low rank positive semidefinite matrix, decompose into these
constituents. The second problem we consider is to determine the facial
structure of the set of correlation matrices, a convex set also known as the
elliptope. This convex body, and particularly its facial structure, plays a
role in applications from combinatorial optimization to mathematical finance.
The third problem is a basic geometric question: given points
(where ) determine whether there is a centered
ellipsoid passing \emph{exactly} through all of the points.
We show that in a precise sense these three problems are equivalent.
Furthermore we establish a simple sufficient condition on a subspace that
ensures any positive semidefinite matrix with column space can be
recovered from for any diagonal matrix using a convex
optimization-based heuristic known as minimum trace factor analysis. This
result leads to a new understanding of the structure of rank-deficient
correlation matrices and a simple condition on a set of points that ensures
there is a centered ellipsoid passing through them.Comment: 20 page
Compressed sensing and robust recovery of low rank matrices
In this paper, we focus on compressed sensing and recovery schemes for low-rank matrices, asking under what conditions a low-rank matrix can be sensed and recovered from incomplete, inaccurate, and noisy observations. We consider three schemes, one based on a certain Restricted Isometry Property and two based on directly sensing the row and column space of the matrix. We study their properties in terms of exact recovery in the ideal case, and robustness issues for approximately low-rank matrices and for noisy measurements
Joint Spectral Radius and Path-Complete Graph Lyapunov Functions
We introduce the framework of path-complete graph Lyapunov functions for
approximation of the joint spectral radius. The approach is based on the
analysis of the underlying switched system via inequalities imposed among
multiple Lyapunov functions associated to a labeled directed graph. Inspired by
concepts in automata theory and symbolic dynamics, we define a class of graphs
called path-complete graphs, and show that any such graph gives rise to a
method for proving stability of the switched system. This enables us to derive
several asymptotically tight hierarchies of semidefinite programming
relaxations that unify and generalize many existing techniques such as common
quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov
functions. We compare the quality of approximation obtained by certain classes
of path-complete graphs including a family of dual graphs and all path-complete
graphs with two nodes on an alphabet of two matrices. We provide approximation
guarantees for several families of path-complete graphs, such as the De Bruijn
graphs, establishing as a byproduct a constructive converse Lyapunov theorem
for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has
gone through two major rounds of revision. In particular, a section on the
performance of our algorithm on application-motivated problems has been added
and a more comprehensive literature review is presente
Recommended from our members
Inevitability of Phase-locking in a Charge Pump Phase Lock Loop using Deductive Verification
Phase-locking in a charge pump (CP) phase lock loop (PLL) is said to be inevitable if all possible states of the CP PLL eventually converge to the equilibrium, where the input and output phases are in lock and the node voltages vanish. We verify this property for a CP PLL using deductive verification. We split this complex property into two sub-properties defined in two disjoint subsets of the state space. We deductively verify the first property using multiple Lyapunov certificates for hybrid systems, and use the Escape certificate for the verification of the second property. Construction of deductive certificates involves positivity check of polynomial inequalities (which is an NP-Hard problem), so we use the sound but incomplete Sum of Squares (SOS) relaxation algorithm to provide a numerical solution
Sums of hermitian squares and the BMV conjecture
Recently Lieb and Seiringer showed that the Bessis-Moussa-Villani conjecture
from quantum physics can be restated in the following purely algebraic way: The
sum of all words in two positive semidefinite matrices where the number of each
of the two letters is fixed is always a matrix with nonnegative trace. We show
that this statement holds if the words are of length at most 13. This has
previously been known only up to length 7. In our proof, we establish a
connection to sums of hermitian squares of polynomials in noncommuting
variables and to semidefinite programming. As a by-product we obtain an example
of a real polynomial in two noncommuting variables having nonnegative trace on
all symmetric matrices of the same size, yet not being a sum of hermitian
squares and commutators.Comment: 21 pages; minor changes; a companion Mathematica notebook is now
available in the source fil
- …