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ABSTRACT

Phase-locking in a charge pump (CP) phase lock loop (PLL)
is said to be inevitable if all possible states of the CP PLL
eventually converge to the equilibrium, where the input and
output phases are in lock and the node voltages vanish. We
verify this property for a CP PLL using deductive verifica-
tion. We split this complex property into two sub-properties
defined in two disjoint subsets of the state space. We de-
ductively verify the first property using multiple Lyapunov
certificates for hybrid systems, and use the Escape certificate
for the verification of the second property. Construction of
deductive certificates involves positivity check of polynomial
inequalities (which is an NP-Hard problem), so we use the
sound but incomplete Sum of Squares (SOS) relaxation al-
gorithm to provide a numerical solution.

Categories and Subject Descriptors

B.7.2 [INTEGRATED CIRCUITS]: Design Aids—Ver-
ification and Simulation

General Terms

Verification

Keywords

Deductive Verification; AMS Circuits; Lyapunov Certificate;
Escape Certificate; SOS Programming

1. INTRODUCTION
Formal methods are in their infancy in Analog and Mixed

Signal (AMS) circuits verification. Start up problems (In-
evitability) have been very common in PLL circuits, i.e.,
for certain initial states of voltages on the nodes, the cir-
cuits do not converge to the desired behaviour. Furthermore,
when perturbed by an external disturbance, designers need
to know if the system will return to the desired behaviour.

Hybrid systems are well known modelling paradigm for a
CP PLL [16], [2], [6]. Techniques for the verification of hybrid
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systems can be classified as, reach-set methods, abstraction
based methods, and certificate based methods. Reach-set
method has been used to prove the inevitability property.
Hundreds of discrete transitions are required by the hybrid
model of the CP PLL before it reaches the locking state. This
results in a large number of continuous set computations fol-
lowed by the guard conditions describing the switching laws,
making the reachability computations prohibitively expen-
sive.

In this paper, we use certificate based deductive verifi-
cation of the inevitability of phase-locking in higher order
CP PLL circuits. Due to its complexity, we adopt a two-
pronged verification approach and divide the inevitability
property in to the conjunction of two sub-properties. Ver-
ification of these two properties determine the truth value
of the inevitability property in two disjoint subsets of the
state space. The first property specifies, that in a compact
set, all system trajectories eventually converge to the equi-
librium locking state. The second property is specified, such
that trajectories in the second subset, will eventually escape
the set and reaches the set where the first property holds.
The first property is verified by computing an attractive
invariant region (ROA), utilizing the deductive Lyapunov
stability theory for hybrid systems [5]. We construct multi-
ple Lyapunov certificates for different modes of the CP PLL
hybrid system. The maximized level curves of these Lya-
punov certificates characterize the level sets whose union
is the ROA. Similarly, we use Escape certificates to verify
the second property, and establish that trajectories in the
second set will eventually leave and reach the ROA. Our
certificate (Lyapunov-Escape) based deductive approach in-
volves checking positivity of polynomial inequalities, which
is an NP-hard problem. Therefore, we utilize the sound but
incomplete SOS relaxation to construct these certificates.

1.1 Related Work
A survey of the formal verification of AMS circuits can

be found in [17]. In [6], the author verified the ‘time to
locking’ property for a digitally extensive PLL. [16] ver-
ified ‘global convergence’ property for an all digital PLL.
They divided the state space into linear and non-linear re-
gions, and applied linear Lyapunov stability theory (using
Quadratic Lyapunov Certificate) for linear and reachabil-
ity analysis for non-linear regions respectively. Time-outs of
the reachability tool has been reported by the author due to
the large number of discrete transitions needed by the PLL
hybrid automata. To avoid discrete jumps, [2] presented a
continuization technique and verified the ‘time to locking’
property of a CP PLL.



Inevitability of an equilibrium state is closely related to
the global asymptotic stability of a dynamical system . Lya-
punov theory is a well known approach for the verification
of such properties [5]. Hybrid system models have differ-
ent flavours that can be found in [8],[1]. Here we consider
the framework outlined in [4]. In the last decade, SOS pro-
gramming has been the major tool used in the algorithmic
construction of Lyapunov certificates for continuous as well
as hybrid systems [9], [11]. Barrier certificates has been used
for safety verification of the hybrid systems in [11]. Deduc-
tive verification of continuous and hybrid systems have been
demonstrated in [14], [13].

This paper is organized as follows: In Sec.II, we introduce
the preliminaries of this paper. Sec.III illustrates verification
of the inevitability of phase-locking in CP PLL. Experimen-
tal results are shown in Sec.IV. Sec.V concludes the paper.

2. PRELIMINARIES

2.1 Hybrid Systems Model
We use the hybrid system formalism described in [4]. We

consider a hybrid system described by the tuple (C,F ,D,G).
Here, {C =

⋃

i∈IC
Ci} ⊂ R

n, and {D =
⋃

i∈ID
Di} ⊂ R

n

are the flow set and jump set for i ∈ N, respectively. IC
and ID are finite disjoint index sets and it is possible that
Ci ∩ Di 6= ∅. The flow and jump maps are, respectively,
F =

⋃

i∈IC
Fi, and G =

⋃

i∈IC
Gi, where each Fi : Rn ×

R
m → R

m+n, and, Gi = R
n → R

n. These two mappings
characterize the continuous and discrete evolution of the sys-
tem, whereas Ci and Di describe subsets of Rn where such
evolution may occur. We represent a hybrid system H as

H =

{

ẋ = Fi(x, u) ∈ F x ∈ C, u ∈ U

x+ = Gi(x) ∈ G x ∈ D
(1)

Here u ∈ U ⊂ R
m is a vector of uncertain parameters.

The state of the hybrid system consists of alternate flows
in jumps through C and D according to Fi and Gi, respec-
tively. This hybrid phenomena can be described by a notion
of time called hybrid time.

Definition 1 (Hybrid Time Domain).
A set T ⊂ R≥0 × N is a hybrid time domain if

T =

j−1
⋃

j=0

([tj , tj+1], j)

where 0 = t0 ≤ t1 ≤ t2 ≤, ..., with the last interval possibly
of the form [tj , tj+1]×{j}, [tj , tj+1)×{j}, or [tj ,∞)×{j}.

Definition 2 (Hybrid Arc).
A mapping x : T → R

n is a hybrid arc if T is a hybrid time
domain and for each j ∈ N, the function t 7→ x(t, j) is locally
absolutely continuous on the interval Ij = {t : (t, j) ∈ T }.

We denote by dom x, the domain of the hybrid arc which
is the hybrid time domain. A hybrid arc x is a solution to
the hybrid system H, if x(0, j) ∈ C∪D and (i) for each j ∈ N

such that Ij has a non-empty interior,

ẋ(t, j) = Fi(x(t, j)), ∀t ∈ Ij ,

x(t, j) ∈ Ci, ∀i ∈ IC , ∀t ∈ [min Ij , sup Ij) (2)

Figure 1: Charge Pump (CP) Phase Lock Loop (PLL)

Assumption 1.

The flow maps Fi(x, u) and the jump maps Gi(x) are poly-
nomials.

Definition 3 (Equilibrium point).
A point x(t, j) ∈ C ∪ D is called an equilibrium, if ∃t, ∃j,
Fj(x(t, j), u) = 0.

Definition 4 (Inevitability of Equilibrium).
The equilibrium point xe is said to be inevitable, if ∀x(0, j) ∈
C ∪ D and bounded t, x(t, j)→ xe.

2.2 CP PLL Model
A CP PLL circuit consists of a reference signal, a phase

frequency detector (PFD), a charge pump (CP), a loop filter
(LF), and a voltage controlled oscillator (VCO). In this pa-
per we consider a single path higher order (Third and fourth)
CP PLL shown in Fig. 11. We use a behavioural model of
the PLL, where we consider a linear model for VCO, a lin-
ear model for the third order LF, and a non-linear model for
the PFD. We denote by φref , and φV CO, the phases of the
reference and VCO output feedback signals respectively. We
model the CP PLL as a hybrid system such that the non-
linearities of the PFD is modelled as a piecewise continuous
signal. Ignoring the cycle slip phenomena, the PFD output
in the form of the charge pump current Ip, is given by the
following piecewise linear inclusion:

Ip =











∈ [IUp IUP ] UP=1, Down=0, 0 ≤ φV CO < 2π ≤ φref

∈ [IDp IDP ] UP=0, Down=1, 0 ≤ φref < 2π ≤ φV CO

∈ [0R 0R] UP=0, Down=0, 0 ≤ φV CO, φref < 2π

(3)
We denote the three modes as mode1 (UP=0, Down=0),
mode2 (UP=1, Down=0) and mode3 (UP=0, Down=1).
The transition from one mode to another is based on the
reference and feedback signals hitting the 2π threshold. Due
to the cyclic behaviour of the PLL and to keep the anal-
ysis modulo 2π, we need to ensure the phases remain in
the range 0 ≤ φV CO, φV CO < 2π (Similarly φref ) after
resetting the PFD. This is achieved by resetting the two
phases such that (φref := 0, φV CO := φV CO − 2π), and
(φref := φref − 2π, φV CO := 0), while taking transitions
from mode1 to mode2 and mode1 to mode3, respectively.
Identity resets are used for transitions from mode2 to mode1
and mode3 to mode1.

Our model consists of the state variables, φV CO, φref ,
voltage v1 across the capacitor C1, and the voltage v2 across
the capacitor C2 (Fourth order has an additional voltage
variable across the third capacitor). Let fV CO, and fref ,
represent the frequencies of the VCO output and the refer-

1Third order shown here,fourth order has an additional
resistor-capacitor in its LF



ence signal respectively. If Kp is the gain of the LF, then
fV CO = Kpv2/2π + fO, where fO is the free running fre-

quency of the VCO. Therefore, φ̇V CO = 2πfV CO/N, φ̇ref =
2πfref . By Kirchhoff’s current law and using the three modes
of the PFD, we get the following hybrid system of the third
order CP PLL

H =































˙









v1

v2

φref

φV CO











= A











v1

v2

φref

φV CO











+BIp + c x ∈ C,

x+ = Gi(x) x ∈ D

(4)

where, A =









−1/RC1 1/RC1 0 0
1/RC2 −1/RC2 0 0

0 0 0 0
0 Kp/N 0 0









,

B =









0
Ip/C2

0
0









, c =









0
0

2πfref
2πfo/N









, Ip as given by Eq. 3.

From the three modes and their invariants, we can easily
find the sets C, D, and the jump maps Gi(x). We notice,
that the state variables φref and φV CO do not settle to zero
in their steady state. Instead the system has a limit cycle like
behaviour in the (φref , φV CO) plane. Here, we are interested
in the stability of the equilibrium point (locking condition)
where the difference of these two phases becomes zero. We
therefore, use the difference φref −φV CO as a state variable
instead of φref , and φV CO.

Remark 1.

This change of state variables transforms all jump maps Gi

in to identity maps (Gi(x) = x), as the same constant 2π
is subtracted from φV CO and φref , leaving their difference
φref − φV CO before and after the jumps unchanged.

2.3 Attractive Invariants in Hybrid Systems
using Lyapunov Certificates

Contrary to the safety, where existence of an invariant set
is sufficient for proving/dis-proving the property, we use the
concept of“attractive invariants”to verify inevitability prop-
erty. These are compact semi-algebraic sets inheriting the
properties of invariance and attractivity; trajectories stay
there indefinitely and eventually converge to the equilibrium
state. Stability and attractivity concepts for an equilibrium
state of the continuous dynamical systems are discussed in
[5], and have been extended to hybrid systems in [4]. The
equilibrium point, xe = 0, is called asymptotically stable if
it is both stable and attractive. There are several versions
of the stability theorems for hybrid systems based on the
global Lyapunov certificate, and multiple Lyapunov certifi-
cates [12]. We use the following theorem of asymptotic sta-
bility of the equilibrium and define the attractive invariant.

Theorem 1.

Let, I0 ⊆ IC be the set of indices that contain the equilib-
rium. For a hybrid system H having an equilibrium point
xe = 0, if there exist Lyapunov certificates Vi such that,

1. Vi(x) > 0, ∀i ∈ IC , ∀x ∈ C \ xe ,

2. Vi(0) = 0, ∀i ∈ I0,

3. ∂Vi

∂x
(x)Fi(x, u) < 0, ∀i ∈ IC , ∀x ∈ C \ xe, Fi ∈ F ,

u ∈ U ,

4. Vj(Gi(x))− Vj′(x) ≤ 0, ∀j ∀j′ ∈ IC , j 6= j′,
∀i ∈ ID, ∀x ∈ D \ xe, Gi ∈ G,

then xe is asymptotically stable. Furthermore, the set AI =
⋃

i(Vi ≤ cimax) ⊂ C ∪ D is an “attractive invariant” set.

Proof. Similarly to [12].

2.4 Escape of Trajectories from a Set using
Escape Certificates

In this paper, we also use an another important charac-
teristic of the trajectories in a semi-algebraic set and term
it as the “Escape” property. This property ensures that tra-
jectories in a compact set can not converge to an invariant
set (Equilibrium,Limit Cycle), and will eventually leave that
set.

Proposition 1.

For a compact set X ⊂ Ci, if there is a differentiable Escape
certificate, E : Rn → R, and ǫ > 0, such that

∂E

∂x
(x)Fi(x, u) ≤ −ε, ∀x ∈ X , u ∈ U (5)

then ∀x(t, i) ∈ X , x(t+ T, i) /∈ X , T > t.

Proof. Assume that there exists x0 ∈ X such that x(t, i)
starting at x0 remain in X as t→∞. From Eq. 5,
E(x) =

∫∞

0
∂E
∂x

(x)Fi(x, u) ≤ −ε. As t → ∞, E(x) → −∞.
This contradicts the assumption as E(x) should be bounded
if x(t, j) has to remain in the bounded set X . Therefore,
x(t, j) has to eventually“Escape”the set X in finite time.

Lemma 1.

If the hybrid arc x(t, j) is bounded and belong to a set X for
the hybrid time (t, j) ≥ 0, then x(t, j) approaches a compact
invariant set as (t, j)→∞.

Proof. See [5].

2.5 SOS Programming
Our deductive verification approach involves checking the

positivity of polynomials in semi-algebraic sets. To solve
this NP-Hard problem, a sound relaxation method based
on SOS programming has been presented in [10], [12]. A
sufficient condition for a multivariate polynomial p(x) to be
non-negative everywhere, is that it can be decomposed as a
sum of squares of polynomials. A polynomial p(x) is a sum of
squares, if there exist polynomials p1 (x), ..., pm(x) such that
p(x) =

∑m

i=1 p
2
i (x). We denote the set of polynomials in n

variables with real coefficients by Pn. A subset of this set
is the set of SOS polynomials in n variables denoted by Sn.
For a differentiable scalar polynomial q : Rn → R, we define
the 0-sub-level-set of q as Z(q) = {x ∈ R

n | q(x) ≤ 0}. We
present an important lemma to be used for polynomial level
sets operations such as intersection, union, and set inclusion
[15].

Lemma 2.

For polynomials p1, p2 ∈ Pn, if there exist SOS polynomials
s0, s1 ∈ Sn such that

s0− s1p1 + p2 = 0 ∀x ∈ R
n (6)

Then Z(p1) ⊂ Z(p2)

Proof. See for example [15] and the references there in.



3. VERIFICATION OF INEVITABILITY OF

PHASE-LOCKING IN CP PLL
To verify inevitability of the CP PLL equilibrium, we in-

troduce two compact sets S1, and S2, such that S1 ∩ S2 =
∅, and S1∪S2 = C∪D. We define two properties whose ver-
ification implies verification of the inevitability of the equi-
librium.

Property 1.

∀x(0, j) ∈ S1, x(t, j)→ xe for t→∞.

Property 2.

∀x(0, j) ∈ S2 = (C ∪ D) \ S1, x(t, j) ∈ S1 for t→ b ∈ R>0.

If we denote the inevitability property by ϕ, Property.1
by ϕ1 and Property.2 by ϕ2 , then ϕ = ϕ1 ∧ ϕ2. A hybrid
arc x satisfies ϕ iff it satisfies ϕ1 in S1 and ϕ2 in S2, i.e.,
∀x ∈ C ∪D, x |= ϕ ⇐⇒ (x |= ϕ1 ∀x ∈ S1) ∧ (x |= ϕ2 ∀x ∈
S2). We verify property ϕ1 using Lyapunov certificates, and
property ϕ2 using Escape certificates.

Theorem 2.

If there are feasible Lyapunov certificates (fulfilling Th. 1),
{V1, V2, V3}, then, x |= ϕ1, ∀x(0, j) ∈ S1 = {(V1 ≤
γ1max) ∪ (V2 ≤ γ2max) ∪ (V3 ≤ γ3max)}, and AI = S1
is the attractive invariant set.

Proof. Follows directly from Th. 1, since the level sets de-
fined by the level curves of the Lyapunov certificates repre-
sent attractive invariant sets with the negative Lie-derivative
along the system trajectories. Therefore, eventually all sys-
tem trajectories starting in these level sets converge to the
equilibrium phase-locking state.

Theorem 3.

If in a compact set S2, such that S1∪S2 = C ∪D, where S1
is an attractive invariant set, we have an Escape certificate
E = ∪i∈{1,2,3}Ei(x) ∀x ∈ S2, then, ∀x(t, j) ∈ S2, x(t, j) ∈
S1 as t+ j →∞.

Proof. Follows directly from Lemma. 1. The boundedness
of x(t, j) is guaranteed by the supply voltage and ground
of the CP PLL circuit. Existence of an Escape certificate
for x(t, j) ∈ S2 (Prop. 1), guarantees that trajectories will
eventually leave S2, and being the only invariant set, they
will eventually reach S1.

Following Th. 2, we verify ϕ1 using Alg. 1. The truth value
of ϕ1 depends on the existence of the attractive invariant
set S1. The set S1 is computed from the maximized level
sets defined by the three candidate Lyapunov certificates
V1, V2, V3, Line (1-6). We compute these certificates using
SOS programming and a mathematical technique called the
S-procedure (to incorporate domain constraints [3]). We en-
code the verification of ϕ1 as two SOS programs. The first
SOS program is given below:

(a) Vi(x)− ǫ−
∑nCi

k=1 s
(ik)
1 (x)gik(x) ∈ Sn, ∀x 6= 0,

i ∈ {1, 2, 3}, ∀k ∈ {1, .., nCi
}, s

(ik)
1 ∈ Sn,

(b)













− ∂Vi

∂x
(x)Fi(x, u)− ǫ−

∑nCi

k=1 s
(ik)
2 (x)gik(x)−

∑m

j=1 s
(j)
3 (x)aj(u)













∈ Sn,

∀i ∈ {1, 2, 3}, ∀k ∈ {1, .., nCi
}, ∀j ∈ {1, ..,m}, s

(ik)
2 ,

s
(j)
3 ∈ Sn,

Algorithm 1 Verification of Property ϕ1

INPUT: : Hybrid System Model of CP PLL
OUTPUT: : ϕ1 Verified/No-answer, S1
1: S1← ∅
2: for n← 1 to n← 3 do

3: Vn ← Parametrize(Vn) ; Setting degree of Vn Polynomials

4: end for

5: if Vn, ∀n ∈ {1, 2, 3}, are feasible (fulfilling Th. 1) then
6: Vmultiple ← {Vmultiple, Vn}, ∀n ∈ {1, 2, 3}
7: S1 ← (Vmultiple(1) ≤ γ1max) ∪ (Vmultiple(2) ≤

γ2max) ∪ (Vmultiple(3) ≤ γ3max)
8: x |= ϕ1, ∀x ∈ S1
9: break

10: else

11: Vn ← Infeasible
12: Increase degree of Lyapunov Certificates
13: end if

14: if degree = maximum possible value & S1 = ∅ then
15: No Answer about ϕ1
16: end if

17: return S1

(c)













Vj(x)− Vj′(Gi(x))− s
(i0)
4 (x)hi0(x)−

∑mDi

k=1 s
(ik)
5 (x)hik(x)













∈ Sn, ∀j∀j
′ ∈ {1, 2, 3},

j 6= j′, ∀i ∈ {1, 2, 3, 4}, ∀k ∈ {1, .., nDi
},

s
(i0)
4 ≥ 0, s

(ik)
5 ∈ Sn, ǫ > 0

Here Vi(x), Vj(x), Vj′(x), s
(ik)
1 , s

(ik)
2 , s

(j)
3 , s

(i0)
4 , s

(ik)
5 , are

polynomials of degree d.
SOS constraints (a) and (b) enforce positive definiteness

on the Lyapunov certificates, and negative semi-definiteness
on their Lie-derivatives respectively. Furthermore, these con-
straints have to be satisfied in their respective domains Ci‘s,
where, Ci = {x ∈ R

n : gik ≥ 0, for k ∈ {1, .., nCi
}, i ∈

{1, 2, 3}}. Constraint (b) also ensures parameters u to belong
to the set, {a(u) ≥ 0, for j ∈ {1, ..,m}}. Constraint in (c)
ensures that Lyapunov certificates Vj(x) decrease along the
discrete jumps in the sets, Di = {x ∈ R

n : hik ≥ 0, hi0 =
0, for k ∈ {1, .., nDi

}, i ∈ {1, 2, 3, 4}}, through the map-

pings Gi(x)‘s. SOS polynomials s
(ik)
1 , s

(ik)
2 , s

(j)
3 , s

(i0)
4 , s

(ik)
5

are used to enforce domain constraints through the S-procedure.
A feasible solution of the above SOS program results in Lya-
punov certificates Vi. If this SOS program is infeasible, then
either the program is repeated for an increased degree d of
the polynomials, or we conclude that the truth value of the
property ϕ1 can not be established Line (11-16).

The second SOS program for maximizing the level curves
for every Vi ≤ (γi ∈ R>0) is (Line-7),

maximize γi

subject to s5 +

nCi
∑

k=1

s6ik(−gik)− (Vi − γi) + ǫ = 0,

s5, s6ik ∈ Sn, i ∈ {1, 2, 3}, k ∈ {1, ..., nCi
}.

This algorithm maximizes the level curves of the Lyapunov
certificates Vi such that Z(Vi − γi) ⊂ Z(−gik), for k ∈
{1, .., nCi

} (Lemma. 2). The set S1 =
⋃3

i=1(Vi ≤ (γi)max).
The non-emptiness of the set S1 shows that x |= ϕ1, ∀x ∈
S1.



Algorithm 2 Verification of Property ϕ2

INPUT: : Hybrid System Model of CP PLL, Set S2 =
∪i∈1,2,3S2i

OUTPUT: : ϕ2 Verified/No-answer
1: for i← 1 to i← 3 do

2: Ei ← Parametrize(Ei) ; Setting degree of Ei Polynomials

3: end for

4: if Ei, ∀i ∈ {1, 2, 3}, are feasible (fulfilling Prop. 1) then
5: Emultiple ← {Emultiple, Ei}, ∀i ∈ {1, 2, 3}
6: x |= ϕ2, ∀x ∈ S2 = ∪i∈1,2,3S2i
7: else

8: Ei ← Infeasible
9: Increase degree of Escape Certificates
10: end if

11: if degree = maximum possible value & Ei are Infeasible
then

12: No Answer about ϕ2
13: end if

14: return Truth value of ϕ2

Similarly, following Th. 3, we verify property ϕ2 utilizing
Alg. 2. We search for three Escape certificates (Prop. 1)
in three disjoint sets S2i, i ∈ {1, 2, 3}, such that S2 =
∪i∈1,2,3S2i. After parametrizing the three Escape certifi-
cates, we establish the feasibility of these Escape certificates
by the following SOS program,

−
∂Ei

∂x
(x)Fi(x, u)−

nCi
∑

k=1

s
(ik)
1 (x)g2ik(x)− ..

m
∑

j=1

s
(j)
2 (x)aj(u) + ε ∈ Sn

s
(ik)
1 , s

(j)
2 ∈ Sn, ε > 0

This SOS program ensures that the Lie-derivative of Ei

is strictly negative in the set, S2i = {x ∈ R
n : g2ik ≥

0, for k ∈ {1, .., nCi
}, i ∈ {1, 2, 3}}. The second constraint

in this SOS program is such that the parameters u belong
to the set, {a(u) ≥ 0, for j ∈ {1, ..,m}}. Here ε is a small
positive real number. Feasibility of this SOS program indi-
cates existence of the Escape certificates for each mode of
the CP PLL hybrid system, and consequently the property
ϕ2 is verified Line(4-6). Alternatively, in case of infeasible
solution of the SOS program, we increase the degree of the
Escape certificates and repeat the process Line(8-10). If the
property ϕ2 is still not verified, we conclude inconclusiveness
about the truth value of ϕ2 (respectively ϕ) Line 12.

4. EXPERIMENTAL EVALUATION
We used YALMIP [7] solver within MATLAB for the

verification of the inevitability property (respectively sub-
properties) on a 2.6 GHZ Intel Core i5 machine with 4 GB of
memory. The CP PLL parameters are listed in Table. 1, with
all phases normalized by 2π. We computed degree-6 multi-
ple Lyapunov certificates for the third order, and degree-4
multiple Lyapunov certificates for the fourth order CP PLL.
Their attractive invariant sets as projected onto different
planes are shown in Fig. 2, and Fig. 3 respectively. We con-
structed three Escape certificates for each mode of the the
third order and fourth order CP PLL hybrid models. For
both benchmarks, we computed degree 2 Escape certificates
for mode2 and mode3. For mode1, we computed degree 12

Parameters Third Order Fourth Order
C1 [1.98 2.2]e− 12F [31 29]e− 12F
C2 [6.1 6.4]e− 12F [3.2 3.4]e− 12F
C3 [1.8 2.2]e− 12F
R [7.8 8.2]e3Ω [48 52]e3Ω
R2 [7 9]e3Ω
fref 27MHZ 5MHZ
fO 27e3MHZ 5MHZ
Ip [495 505]e-6A [395 405]e-6A
Kp [198 202] [495 502]

Table 1: PLL Parameters used in the Experimentation
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Figure 2: 3-Order AI Projected onto (v1, v2), and(v2, (φref −

φV CO)

and degree 10 Escape certificates for third and fourth order
CP PLL respectively. We chose, ε = 1e − 4, for all Escape
certificates. We noticed that decreasing the value of ε re-
sulted in a higher degree Escape certificate for both bench-
marks. However, this is at the cost of higher computation
time. We therefore opted for the value 1e − 4. A simula-
tion trace along with the derivative of the Escape certificate
patched up from the three Escape certificates of each bench-
mark are depicted in Fig. 4 and Fig. 5 respectively. Note
that due to space constraints, we have shown projections on
only two planes for each benchmark. Simulation traces show
that the derivative of the Escape certificate is negative along
the trajectories. Computation time of different steps of our
verification methodology is given in Table. 2. Though the
maximum degree of certificates (Lyapunov,Escape) for the
fourth order is less than that of the third order, however, the
dimensionality factor is dominant as far as the computation
time is concerned.

Results show the effectiveness of our approach to the ver-
ification of the inevitability property of a complex real cir-
cuit. We have proved the inevitability property avoiding
hundred of discrete transitions as well as the complex con-
tinuization as in [2]. Computation time is comparable to
[2], and infact is less by an order of atleast three consider-
ing their approach using gridding of the state space for a
third order PLL only. Our Lyapunov and Escape certificate
based deductive methods, though needs user input in the
formalization of the problem, are applicable to infinite do-
main (oppose to bounded) and avoid approximating (under
or over) solutions of the differential equations. Furthermore,
SOS based relaxation, in addition to solve the NP-hard prob-
lem of positivity check, offers an easy way of incorporating
parameter variations as well.

5. CONCLUSION
We have presented a scalable deductive verification method-

ology for the inevitability verification of phase-locking in
higher order CP PLL. We benefited from the Lyapunov sta-



Verification Step 3-Order Time(Sec) 4-Order Time(Sec)
Attractive Invariants 1381.7(Degree 6) 10021(Degree 4)
Max.Level Curves 15.5 12
Escape Certificates 100 900

Table 2: Computation Time of the Inevitability Verification
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Figure 3: 4-Order AI Projected onto (v2, v3), and (v2, (φref −

φV CO)

bility of hybrid systems and Non-linear continuous systems
theory, and came up with some interesting local properties.
Successful verification of these local properties resulted in
the global inevitability property verification of a CP PLL.
Involving an NP-Hard problem of checking the positivity of
polynomials inequalities, we used the sound SOS relaxation
algorithm for the verification of these properties. Experimen-
tal results show the effectiveness of our approach avoiding
expensive discretization and reach set computations.
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