677 research outputs found
Research in the effective implementation of guidance computers with large scale arrays Interim report
Functional logic character implementation in breadboard design of NASA modular compute
Density-matrix functional theory of the Hubbard model: An exact numerical study
A density functional theory for many-body lattice models is considered in
which the single-particle density matrix is the basic variable. Eigenvalue
equations are derived for solving Levy's constrained search of the interaction
energy functional W, which is expressed as the sum of Hartree-Fock energy and
the correlation energy E_C. Exact results are obtained for E_C of the Hubbard
model on various periodic lattices. The functional dependence of E_C is
analyzed by varying the number of sites, band filling and lattice structure.
The infinite one-dimensional chain and one-, two-, or three-dimensional finite
clusters with periodic boundary conditions are considered. The properties of
E_C are discussed in the limits of weak and strong electronic correlations, as
well as in the crossover region. Using an appropriate scaling we observe a
pseudo-universal behavior which suggests that the correlation energy of
extended systems could be obtained quite accurately from finite cluster
calculations. Finally, the behavior of E_C for repulsive (U>0) and attractive
(U<0) interactions are contrasted.Comment: Phys. Rev. B (1999), in pres
What am I not seeing? An Interactive Approach to Social Content Discovery in Microblogs
In this paper, we focus on the informational and user experience benefits of user-driven topic exploration in microblog communities, such as Twitter, in an inspectable, controllable and personalized manner. To this end, we introduce ``HopTopics'' -- a novel interactive tool for exploring content that is popular just beyond a user's typical information horizon in a microblog, as defined by the network of individuals that they are connected to. We present results of a user study (N=122) to evaluate HopTopics with varying complexity against a typical microblog feed in both personalized and non-personalized conditions. Results show that the HopTopics system, leveraging content from both the direct and extended network of a user, succeeds in giving users a better sense of control and transparency. Moreover, participants had a poor mental model for the degree of novel content discovered when presented with non-personalized data in the Inspectable interface
Prediction of infrared light emission from pi-conjugated polymers: a diagrammatic exciton basis valence bond theory
There is currently a great need for solid state lasers that emit in the
infrared, as this is the operating wavelength regime for applications in
telecommunications. Existing --conjugated polymers all emit in the visible
or ultraviolet, and whether or not --conjugated polymers that emit in the
infrared can be designed is an interesting challenge. On the one hand, the
excited state ordering in trans-polyacetylene, the --conjugated polymer
with relatively small optical gap, is not conducive to light emission because
of electron-electron interaction effects. On the other hand, excited state
ordering opposite to that in trans-polyacetylene is usually obtained by
chemical modification that increases the effective bond-alternation, which in
turn increases the optical gap. We develop a theory of electron correlation
effects in a model -conjugated polymer that is obtained by replacing the
hydrogen atoms of trans-polyacetylene with transverse conjugated groups, and
show that the effective on-site correlation in this system is smaller than the
bare correlation in the unsubstituted system. An optical gap in the infrared as
well as excited state ordering conducive to light emission is thereby predicted
upon similar structural modifications.Comment: 15 pages, 15 figures, 1 tabl
Interaction energy functional for lattice density functional theory: Applications to one-, two- and three-dimensional Hubbard models
The Hubbard model is investigated in the framework of lattice density
functional theory (LDFT). The single-particle density matrix with
respect the lattice sites is considered as the basic variable of the many-body
problem. A new approximation to the interaction-energy functional
is proposed which is based on its scaling properties and which recovers exactly
the limit of strong electron correlations at half-band filling. In this way, a
more accurate description of is obtained throughout the domain of
representability of , including the crossover from weak to strong
correlations. As examples of applications results are given for the
ground-state energy, charge-excitation gap, and charge susceptibility of the
Hubbard model in one-, two-, and three-dimensional lattices. The performance of
the method is demonstrated by comparison with available exact solutions, with
numerical calculations, and with LDFT using a simpler dimer ansatz for .
Goals and limitations of the different approximations are discussed.Comment: 25 pages and 8 figures, submitted to Phys. Rev.
Network segregation in a model of misinformation and fact checking
Misinformation under the form of rumor, hoaxes, and conspiracy theories
spreads on social media at alarming rates. One hypothesis is that, since social
media are shaped by homophily, belief in misinformation may be more likely to
thrive on those social circles that are segregated from the rest of the
network. One possible antidote is fact checking which, in some cases, is known
to stop rumors from spreading further. However, fact checking may also backfire
and reinforce the belief in a hoax. Here we take into account the combination
of network segregation, finite memory and attention, and fact-checking efforts.
We consider a compartmental model of two interacting epidemic processes over a
network that is segregated between gullible and skeptic users. Extensive
simulation and mean-field analysis show that a more segregated network
facilitates the spread of a hoax only at low forgetting rates, but has no
effect when agents forget at faster rates. This finding may inform the
development of mitigation techniques and overall inform on the risks of
uncontrolled misinformation online
Exchange Interaction in Binuclear Complexes with Rare Earth and Copper Ions: A Many-Body Model Study
We have used a many-body model Hamiltonian to study the nature of the
magnetic ground state of hetero-binuclear complexes involving rare-earth and
copper ions. We have taken into account all diagonal repulsions involving the
rare-earth 4f and 5d orbitals and the copper 3d orbital. Besides, we have
included direct exchange interaction, crystal field splitting of the rare-earth
atomic levels and spin-orbit interaction in the 4f orbitals. We have identified
the inter-orbital repulsion, U and crystal field parameter,
as the key parameters involved in controlling the type of exchange
interaction between the rare earth and copper 3d spins. We have explored
the nature of the ground state in the parameter space of U, ,
spin-orbit interaction strength and the filling n. We find
that these systems show low-spin or high-spin ground state depending on the
filling of the levels of the rare-earth ion and ground state spin is
critically dependent on U and . In case of half-filling
(Gd(III)) we find a reentrant low-spin state as U is increased, for
small values of , which explains the recently reported apparent
anomalous anti-ferromagnetic behaviour of Gd(III)-radical complexes. By varying
U we also observe a switch over in the ground state spin for other
fillings . We have introduced a spin-orbit coupling scheme which goes beyond
L-S or j-j coupling scheme and we find that spin-orbit coupling does not
significantly alter the basic picture.Comment: 22 pages, 11 ps figure
Electron correlation effects in electron-hole recombination in organic light-emitting diodes
We develop a general theory of electron--hole recombination in organic light
emitting diodes that leads to formation of emissive singlet excitons and
nonemissive triplet excitons. We briefly review other existing theories and
show how our approach is substantively different from these theories. Using an
exact time-dependent approach to the interchain/intermolecular charge-transfer
within a long-range interacting model we find that, (i) the relative yield of
the singlet exciton in polymers is considerably larger than the 25% predicted
from statistical considerations, (ii) the singlet exciton yield increases with
chain length in oligomers, and, (iii) in small molecules containing nitrogen
heteroatoms, the relative yield of the singlet exciton is considerably smaller
and may be even close to 25%. The above results are independent of whether or
not the bond-charge repulsion, X_perp, is included in the interchain part of
the Hamiltonian for the two-chain system. The larger (smaller) yield of the
singlet (triplet) exciton in carbon-based long-chain polymers is a consequence
of both its ionic (covalent) nature and smaller (larger) binding energy. In
nitrogen containing monomers, wavefunctions are closer to the noninteracting
limit, and this decreases (increases) the relative yield of the singlet
(triplet) exciton. Our results are in qualitative agreement with
electroluminescence experiments involving both molecular and polymeric light
emitters. The time-dependent approach developed here for describing
intermolecular charge-transfer processes is completely general and may be
applied to many other such processes.Comment: 19 pages, 11 figure
Recommended from our members
Discovering the Unfindable: The Tension Between Findability and Discoverability in a Bookshop Designed for Serendipity
Serendipity is a key aspect of user experience, particularly in the context of information acquisition - where it is known as information encountering. Unexpectedly encountering interesting or useful information can spark new insights while surprising and delighting. However, digital environments have been designed primarily for goal-directed seeking over loosely-directed exploration, searching over discovering. In this paper we examine a novel physical environment - a bookshop designed primarily for serendipity - for cues as to how information encountering might be helped or hindered by digital design. Naturalistic observations and interviews revealed it was almost impossible for participants to find specific books or topics other than by accident. But all unexpectedly encoun-tered interesting books, highlighting a tension between findability and discoverability. While some of the bookshop’s design features enabled information en-countering, others inhibited it. However, encountering was resilient, as it occurred despite participants finding it hard to understand the purpose of even those features that did enable it. Findings suggest the need to consider how transparent or opaque the purpose of design features should be and to balance structure and lack of it when designing digital environments for findability and discoverability
Theory of excited state absorptions in phenylene-based -conjugated polymers
Within a rigid-band correlated electron model for oligomers of
poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that
there exist two fundamentally different classes of two-photon A states in
these systems to which photoinduced absorption (PA) can occur. At relatively
lower energies there occur A states which are superpositions of one
electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations,
that are both comprised of the highest delocalized valence band and the lowest
delocalized conduction band states only. The dominant PA is to one specific
member of this class of states (the mA). In addition to the above class of
A states, PA can also occur to a higher energy kA state whose 2e--2h
component is {\em different} and has significant contributions from excitations
involving both delocalized and localized bands. Our calculated scaled energies
of the mA and the kA agree reasonably well to the experimentally
observed low and high energy PAs in PPV. The calculated relative intensities of
the two PAs are also in qualitative agreement with experiment. In the case of
ladder-type PPP and its oligomers, we predict from our theoretical work a new
intense PA at an energy considerably lower than the region where PA have been
observed currently. Based on earlier work that showed that efficient
charge--carrier generation occurs upon excitation to odd--parity states that
involve both delocalized and localized bands, we speculate that it is the
characteristic electronic nature of the kA that leads to charge generation
subsequent to excitation to this state, as found experimentally.Comment: Revtex4 style, 2 figures inserted in the text, three tables, 10 page
- …
