271 research outputs found

    Structure of HrcQ(B)-C, a conserved component of the bacterial type III secretion systems

    Get PDF
    Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C). Here, we report the crystal structure of HrcQ(B)-C and show that this domain retains the ability of the full-length protein to interact with other type III components. A 3D analysis of sequence conservation patterns reveals two clusters of residues potentially involved in protein–protein interactions. Based on the analogies between HrcQ(B) and its flagellum homologues, we propose that HrcQ(B)-C participates in the formation of a C-ring-like assembly

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Screening of the DNA mismatch repair genes MLH1, MSH2 and MSH6 in a Greek cohort of Lynch syndrome suspected families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germline mutations in the DNA mismatch repair genes predispose to Lynch syndrome, thus conferring a high relative risk of colorectal and endometrial cancer. The <it>MLH1, MSH2 </it>and <it>MSH6 </it>mutational spectrum reported so far involves minor alterations scattered throughout their coding regions as well as large genomic rearrangements. Therefore, a combination of complete sequencing and a specialized technique for the detection of genomic rearrangements should be conducted during a proper DNA-testing procedure. Our main goal was to successfully identify Lynch syndrome families and determine the spectrum of <it>MLH1</it>, <it>MSH2 </it>and <it>MSH6 </it>mutations in Greek Lynch families in order to develop an efficient screening protocol for the Greek colorectal cancer patients' cohort.</p> <p>Methods</p> <p>Forty-two samples from twenty-four families, out of which twenty two of Greek, one of Cypriot and one of Serbian origin, were screened for the presence of germline mutations in the major mismatch repair genes through direct sequencing and MLPA. Families were selected upon Amsterdam criteria or revised Bethesda guidelines.</p> <p>Results</p> <p>Ten deleterious alterations were detected in twelve out of the twenty-four families subjected to genetic testing, thus our detection rate is 50%. Four of the pathogenic point mutations, namely two nonsense, one missense and one splice site change, are novel, whereas the detected genomic deletion encompassing exon 6 of the <it>MLH1 </it>gene has been described repeatedly in the LOVD database. The average age of onset for the development of both colorectal and endometrial cancer among mutation positive families is 43.2 years.</p> <p>Conclusion</p> <p>The mutational spectrum of the MMR genes investigated as it has been shaped by our analysis is quite heterogeneous without any strong indication for the presence of a founder effect.</p

    Determinants of Initiation Codon Selection during Translation in Mammalian Cells

    Get PDF
    Factors affecting translation of mRNA contribute to the complexity of eukaryotic proteomes. In some cases, translation of a particular mRNA can generate multiple proteins. However, the factors that determine whether ribosomes initiate translation from the first AUG codon in the transcript, from a downstream codon, or from multiple sites are not completely understood. Various mRNA properties, including AUG codon-accessibility and 5′ leader length have been proposed as potential determinants that affect where ribosomes initiate translation. To explore this issue, we performed studies using synthetic mRNAs with two in-frame AUG codons−both in excellent context. Open reading frames initiating at AUG1 and AUG2 encode large and small isoforms of a reporter protein, respectively. Translation of such an mRNA in COS-7 cells was shown to be 5′ cap-dependent and to occur efficiently from both AUG codons. AUG codon-accessibility was modified by using two different elements: an antisense locked nucleic acid oligonucleotide and an exon-junction complex. When either element was used to mask AUG1, the ratio of the proteins synthesized changed, favoring the smaller (AUG2-initiated) protein. In addition, we observed that increased leader length by itself changed the ratio of the proteins and favored initiation at AUG1. These observations demonstrate that initiation codon selection is affected by various factors, including AUG codon-accessibility and 5′ leader length, and is not necessarily determined by the order of AUG codons (5′→3′). The modulation of AUG codon accessibility may provide a powerful means of translation regulation in eukaryotic cells

    Inflammation Triggers Emergency Granulopoiesis through a Density-Dependent Feedback Mechanism

    Get PDF
    Normally, neutrophil pools are maintained by homeostatic mechanisms that require the transcription factor C/EBPα. Inflammation, however, induces neutrophilia through a distinct pathway of “emergency” granulopoiesis that is dependent on C/EBPβ. Here, we show in mice that alum triggers emergency granulopoiesis through the IL-1RI-dependent induction of G-CSF. G-CSF/G-CSF-R neutralization impairs proliferative responses of hematopoietic stem and progenitor cells (HSPC) to alum, but also abrogates the acute mobilization of BM neutrophils, raising the possibility that HSPC responses to inflammation are an indirect result of the exhaustion of BM neutrophil stores. The induction of neutropenia, via depletion with Gr-1 mAb or myeloid-specific ablation of Mcl-1, elicits G-CSF via an IL-1RI-independent pathway, stimulating granulopoietic responses indistinguishable from those induced by adjuvant. Notably, C/EBPβ, thought to be necessary for enhanced generative capacity of BM, is dispensable for increased proliferation of HSPC to alum or neutropenia, but plays a role in terminal neutrophil differentiation during granulopoietic recovery. We conclude that alum elicits a transient increase in G-CSF production via IL-1RI for the mobilization of BM neutrophils, but density-dependent feedback sustains G-CSF for accelerated granulopoiesis

    High-Efficient Generation of Induced Pluripotent Stem Cells from Human Astrocytes

    Get PDF
    The reprogramming of human somatic cells to induced pluripotent stem (hiPS) cells enables the possibility of generating patient-specific autologous cells for regenerative medicine. A number of human somatic cell types have been reported to generate hiPS cells, including fibroblasts, keratinocytes and peripheral blood cells, with variable reprogramming efficiencies and kinetics. Here, we show that human astrocytes can also be reprogrammed into hiPS (ASThiPS) cells, with similar efficiencies to keratinocytes, which are currently reported to have one of the highest somatic reprogramming efficiencies. ASThiPS lines were indistinguishable from human embryonic stem (ES) cells based on the expression of pluripotent markers and the ability to differentiate into the three embryonic germ layers in vitro by embryoid body generation and in vivo by teratoma formation after injection into immunodeficient mice. Our data demonstrates that a human differentiated neural cell type can be reprogrammed to pluripotency and is consistent with the universality of the somatic reprogramming procedure

    Human Embryonic Stem Cells and Embryonal Carcinoma Cells Have Overlapping and Distinct Metabolic Signatures

    Get PDF
    While human embryonic stem cells (hESCs) and human embryonal carcinoma cells (hECCs) have been studied extensively at the levels of the genome, transcriptome, proteome and epigenome our knowledge of their corresponding metabolomes is limited. Here, we present the metabolic signatures of hESCs and hESCs obtained by untargeted gas chromatography coupled to mass spectrometry (GC-MS). Whilst some metabolites are common to both cell types, representing the self-renewal and house-keeping signatures, others were either higher (e.g., octadecenoic acid, glycerol-3-phosphate, 4-hydroxyproline) or lower (e.g., glutamic acid, mannitol, malic acid, GABA) in hESCs (H9) compared to hECCs (NTERA2), these represent cell type specific signatures. Further, our combined results of GC-MS and microarray based gene expression profiling of undifferentiated and OCT4-depleted hESCs are consistent with the Warburg effect which is increased glycolysis in embryonic cells and tumor cells in the presence of O2 while oxidative phosphorylation (OXPHOS) is impaired or even shut down. RNAi-based OCT4 knock down mediated differentiation resulted in the activation of the poised OXPHOS machinery by expressing missing key proteins such as NDUFC1, UQCRB and COX, increase in TCA cycle activity and decreased lactate metabolism. These results shed light on the metabolite layer of pluripotent stem cells and could potentially establish novel metabolic markers of self renewal and pluripotency
    corecore