1,131 research outputs found

    An infrared study of the double nucleus in NGC3256

    Full text link
    We present new resolved near and mid-IR imaging and N-band spectroscopy of the two nuclei in the merger system NGCA3256, the most IR luminous galaxy in the nearby universe. The results from the SED fit to the data are consistent with previous estimates of the amount of obscuration towards the nuclei and the nuclear star formation rates. However, we also find substantial differences in the infrared emission from the two nuclei which cannot be explained by obscuration alone. We conclude that the northern nucleus requires an additional component of warm dust in order to explain its properties. This suggests that local starforming conditions can vary significantly within the environment of a single system.Comment: Accepted for publication (MNRAS

    On Forward J/\psi Production at Fermilab Tevatron

    Full text link
    The D0 Collaboration has recently reported the measurement of J/\psi production at low angle. We show here that the inclusion of color octet contributions in any framework is able to reproduce this data.Comment: 1 page, Revtex, uses epsfig.sty, 2 postscript figure

    On the entropy production of time series with unidirectional linearity

    Full text link
    There are non-Gaussian time series that admit a causal linear autoregressive moving average (ARMA) model when regressing the future on the past, but not when regressing the past on the future. The reason is that, in the latter case, the regression residuals are only uncorrelated but not statistically independent of the future. In previous work, we have experimentally verified that many empirical time series indeed show such a time inversion asymmetry. For various physical systems, it is known that time-inversion asymmetries are linked to the thermodynamic entropy production in non-equilibrium states. Here we show that such a link also exists for the above unidirectional linearity. We study the dynamical evolution of a physical toy system with linear coupling to an infinite environment and show that the linearity of the dynamics is inherited to the forward-time conditional probabilities, but not to the backward-time conditionals. The reason for this asymmetry between past and future is that the environment permanently provides particles that are in a product state before they interact with the system, but show statistical dependencies afterwards. From a coarse-grained perspective, the interaction thus generates entropy. We quantitatively relate the strength of the non-linearity of the backward conditionals to the minimal amount of entropy generation.Comment: 16 page

    Hard probes in heavy ion collisions at the LHC: heavy flavour physics

    Full text link
    We present the results from the heavy quarks and quarkonia working group. This report gives benchmark heavy quark and quarkonium cross sections for pppp and pApA collisions at the LHC against which the AAAA rates can be compared in the study of the quark-gluon plasma. We also provide an assessment of the theoretical uncertainties in these benchmarks. We then discuss some of the cold matter effects on quarkonia production, including nuclear absorption, scattering by produced hadrons, and energy loss in the medium. Hot matter effects that could reduce the observed quarkonium rates such as color screening and thermal activation are then discussed. Possible quarkonium enhancement through coalescence of uncorrelated heavy quarks and antiquarks is also described. Finally, we discuss the capabilities of the LHC detectors to measure heavy quarks and quarkonia as well as the Monte Carlo generators used in the data analysis.Comment: 126 pages Latex; 96 figures included. Subgroup report, to appear in the CERN Yellow Book of the workshop: Hard Probes in Heavy Ion Collisions at the LHC. See also http://a.home.cern.ch/f/frixione/www/hvq.html for a version with better quality for a few plot

    Composition Dependence of the Structure and Electronic Properties of Liquid Ga-Se Alloys Studied by Ab Initio Molecular Dynamics Simulation

    Full text link
    Ab initio molecular dynamics simulation is used to study the structure and electronic properties of the liquid Ga-Se system at the three compositions Ga2_2Se, GaSe and Ga2_2Se3_3, and of the GaSe and Ga2_2Se3_3 crystals. The calculated equilibrium structure of GaSe crystal agrees well with available experimental data. The neutron-weighted liquid structure factors calculated from the simulations are in reasonable agreement with recent neutron diffraction measurements. Simulation results for the partial radial distribution functions show that the liquid structure is closely related to that of the crystals. A close similarity between solid and liquid is also found for the electronic density of states and charge density. The calculated electronic conductivity decreases strongly with increasing Se content, in accord with experimental measurements.Comment: REVTeX, 8 pages and 12 uuencoded PostScript figures, submitted to Phys. Rev. B. corresponding author: [email protected]

    Neural Interactive Collaborative Filtering

    Full text link
    In this paper, we study collaborative filtering in an interactive setting, in which the recommender agents iterate between making recommendations and updating the user profile based on the interactive feedback. The most challenging problem in this scenario is how to suggest items when the user profile has not been well established, i.e., recommend for cold-start users or warm-start users with taste drifting. Existing approaches either rely on overly pessimistic linear exploration strategy or adopt meta-learning based algorithms in a full exploitation way. In this work, to quickly catch up with the user's interests, we propose to represent the exploration policy with a neural network and directly learn it from the feedback data. Specifically, the exploration policy is encoded in the weights of multi-channel stacked self-attention neural networks and trained with efficient Q-learning by maximizing users' overall satisfaction in the recommender systems. The key insight is that the satisfied recommendations triggered by the exploration recommendation can be viewed as the exploration bonus (delayed reward) for its contribution on improving the quality of the user profile. Therefore, the proposed exploration policy, to balance between learning the user profile and making accurate recommendations, can be directly optimized by maximizing users' long-term satisfaction with reinforcement learning. Extensive experiments and analysis conducted on three benchmark collaborative filtering datasets have demonstrated the advantage of our method over state-of-the-art methods

    A Hot Uranus Orbiting the Super Metal-rich Star HD77338 and the Metallicity - Mass Connection

    Get PDF
    We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD77338 as part of our on-going Calan-Hertfordshire Extrasolar Planet Search. The best fit planet solution has an orbital period of 5.7361\pm0.0015 days and with a radial velocity semi-amplitude of only 5.96\pm1.74 m/s, we find a minimum mass of 15.9+4.7-5.3 Me. The best fit eccentricity from this solution is 0.09+0.25-0.09, and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35\pm0.06 dex, whereas another recent work (Trevisan et al. 2011) finds +0.47\pm0.05 dex. Thus HD77338b is one of the most metal-rich planet host stars known and the most metal-rich star hosting a sub-Neptune mass planet. We searched for a transit signature of HD77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low-mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this, low-mass planet desert, is statistically significant with the current sample of 36 planets at around the 4.5\sigma\ level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low-mass planets can now be discovered with a relatively small number of data points using stable instrumentation.Comment: 25 pages, 15 figures, 5 tables, accepted for publication in Ap
    • …
    corecore