530 research outputs found
Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016
Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul metropolitan area (SMA) during the Korea-United States Air Quality Study (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations were conducted aboard the NASA DC-8 and at two ground sites (Olympic Park, OP; Taehwa Research Forest, TRF), representing an urbanized area and a forested suburban region, respectively. Positive correlations between daytime Cl2 and ClNO2 were observed at both sites, the slope of which was dependent on O3 levels. The possible mechanisms are explored through box model simulations constrained with observations. The overall diurnal variations in ClNO2 at both sites appeared similar but the nighttime variations were systematically different. For about half of the observation days at the OP site the level of ClNO2 increased at sunset but rapidly decreased at around midnight. On the other hand, high levels were observed throughout the night at the TRF site. Significant levels of ClNO2 were observed at both sites for 4-5 h after sunrise. Airborne observations, box model calculations, and back-trajectory analysis consistently show that these high levels of ClNO2 in the morning are likely from vertical or horizontal transport of air masses from the west. Box model results show that chlorine-radical-initiated chemistry can impact the regional photochemistry by elevating net chemical production rates of ozone by 25% in the morning
The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings
Atmospheric
marine aerosol particles impact Earth's albedo and climate. These particles
can be primary or secondary and come from a variety of sources, including sea
salt, dissolved organic matter, volatile organic compounds, and
sulfur-containing compounds. Dimethylsulfide (DMS) marine emissions
contribute greatly to the global biogenic sulfur budget, and its oxidation
products can contribute to aerosol mass, specifically as sulfuric acid and
methanesulfonic acid (MSA). Further, sulfuric acid is a known nucleating
compound, and MSA may be able to participate in nucleation when bases are
available. As DMS emissions, and thus MSA and sulfuric acid from DMS
oxidation, may have changed since pre-industrial times and may change in a
warming climate, it is important to characterize and constrain the climate
impacts of both species. Currently, global models that simulate aerosol size
distributions include contributions of sulfate and sulfuric acid from DMS
oxidation, but to our knowledge, global models typically neglect the impact
of MSA on size distributions.
In this study, we use the GEOS-Chem-TOMAS (GC-TOMAS) global aerosol
microphysics model to determine the impact on aerosol size distributions and
subsequent aerosol radiative effects from including MSA in the size-resolved
portion of the model. The effective equilibrium vapor pressure of MSA is
currently uncertain, and we use the Extended Aerosol Inorganics Model (E-AIM)
to build a parameterization for GC-TOMAS of MSA's effective volatility as a
function of temperature, relative humidity, and available gas-phase bases,
allowing MSA to condense as an ideally nonvolatile or semivolatile species or
too volatile to condense. We also present two limiting cases for MSA's
volatility, assuming that MSA is always ideally nonvolatile (irreversible
condensation) or that MSA is always ideally semivolatile (quasi-equilibrium
condensation but still irreversible condensation). We further present
simulations in which MSA participates in binary and ternary nucleation with
the same efficacy as sulfuric acid whenever MSA is treated as ideally
nonvolatile. When using the volatility parameterization described above (both
with and without nucleation), including MSA in the model changes the global
annual averages at 900 hPa of submicron aerosol mass by 1.2 %, N3
(number concentration of particles greater than 3 nm in diameter) by
â3.9 % (non-nucleating) or 112.5 % (nucleating), N80 by 0.8 %
(non-nucleating) or 2.1 % (nucleating), the cloud-albedo aerosol indirect
effect (AIE) by â8.6 mW mâ2 (non-nucleating) or â26 mW mâ2
(nucleating), and the direct radiative effect (DRE) by â15 mW mâ2
(non-nucleating) or â14 mW mâ2 (nucleating). The sulfate and
sulfuric acid from DMS oxidation produces 4â6 times more submicron mass than
MSA does, leading to an âŒ10 times stronger cooling effect in the DRE.
But the changes in N80 are comparable between the contributions from MSA and
from DMS-derived sulfate/sulfuric acid, leading to comparable changes in the
cloud-albedo AIE.
Modelâmeasurement comparisons with the Heintzenberg et al. (2000) dataset
over the Southern Ocean indicate that the default model has a missing source
or sources of ultrafine particles: the cases in which MSA participates in
nucleation (thus increasing ultrafine number) most closely match the
Heintzenberg distributions, but we cannot conclude nucleation from MSA is the
correct reason for improvement. Modelâmeasurement comparisons with
particle-phase MSA observed with a customized Aerodyne high-resolution
time-of-flight aerosol mass spectrometer (AMS) from the ATom campaign show
that cases with the MSA volatility parameterizations (both with and without
nucleation) tend to fit the measurements the best (as this is the first use
of MSA measurements from ATom, we provide a detailed description of these
measurements and their calibration). However, no one model sensitivity case
shows the best modelâmeasurement agreement for both Heintzenberg and the
ATom campaigns. As there are uncertainties in both MSA's behavior (nucleation
and condensation) and the DMS emissions inventory, further studies on both
fronts are needed to better constrain MSA's past, current, and future impacts
upon the global aerosol size distribution and radiative forcing.</p
Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): Insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations
Geostationary satellite measurements of aerosol optical depth (AOD) over East Asia from the Geostationary Ocean Color Imager (GOCI) and Advanced Himawari Imager (AHI) instruments can augment surface monitoring of fine particulate matter (PM2.5) air quality, but this requires better understanding of the AODâPM2.5 relationship. Here we use the GEOS-Chem chemical transport model to analyze the critical variables determining the AODâPM2.5 relationship over East Asia by simulation of observations from satellite, aircraft, and ground-based datasets. This includes the detailed vertical aerosol profiling over South Korea from the KORUS-AQ aircraft campaign (MayâJune 2016) with concurrent ground-based PM2.5 composition, PM10, and AERONET AOD measurements. The KORUS-AQ data show that 550ânm AOD is mainly contributed by sulfateânitrateâammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust concentrations in the free troposphere, reflecting the optically effective size and high hygroscopicity of the PBL aerosols. We updated SNA and organic aerosol size distributions in GEOS-Chem to represent aerosol optical properties over East Asia by using in situ measurements of particle size distributions from KORUS-AQ. We find that SNA and organic aerosols over East Asia have larger size (number median radius of 0.11â”m with geometric standard deviation of 1.4) and 20â% larger mass extinction efficiency as compared to aerosols over North America (default setting in GEOS-Chem). Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical profiles of aerosol mass, its ability to link AOD to PM2.5 is limited by under-accounting of coarse PM and by a large overestimate of nighttime PM2.5 nitrate. The GOCIâAHI AOD data over East Asia in different seasons show agreement with AERONET AODs and a spatial distribution consistent with surface PM2.5 network data. The AOD observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM2.5. This is due to low PBL depths compounded by high residential coal emissions in winter and high relative humidity (RH) in summer. Seasonality of AOD and PM2.5 over South Korea is much weaker, reflecting weaker variation in PBL depth and lack of residential coal emissions
A new satellite RNA is associated with natural infections of cucumber mosaic virus in succulent snap bean
Cucumber mosaic virus (CMV) was consistently recovered from symptomatic snap bean plants during surveys conducted in 2007 and 2008 in central Wisconsin. A large proportion of these CMV-infected plants contained a single-stranded linear RNA molecule consisting of 339 nucleotides and sharing 90â94% sequence identity with other satellite (sat) RNAs of CMV. Comparison of this satRNA sequence with currently available CMV satRNA sequences suggests this to be a novel satRNA
Aphid Wing Induction and Ecological Costs of Alarm Pheromone Emission under Field Conditions
The pea aphid, Acyrthosiphon pisum Harris, (Homoptera: Aphididae) releases the volatile sesquiterpene (E)-ÎČ-farnesene (EBF) when attacked by a predator, triggering escape responses in the aphid colony. Recently, it was shown that this alarm pheromone also mediates the production of the winged dispersal morph under laboratory conditions. The present work tested the wing-inducing effect of EBF under field conditions. Aphid colonies were exposed to two treatments (control and EBF) and tested in two different environmental conditions (field and laboratory). As in previous experiments aphids produced higher proportion of winged morphs among their offspring when exposed to EBF in the laboratory but even under field conditions the proportion of winged offspring was higher after EBF application (6.84±0.98%) compared to the hexane control (1.54±0.25%). In the field, the proportion of adult aphids found on the plant at the end of the experiment was lower in the EBF treatment (58.1±5.5%) than in the control (66.9±4.6%), in contrast to the climate chamber test where the numbers of adult aphids found on the plant at the end of the experiment were, in both treatments, similar to the numbers put on the plant initially. Our results show that the role of EBF in aphid wing induction is also apparent under field conditions and they may indicate a potential cost of EBF emission. They also emphasize the importance of investigating the ecological role of induced defences under field conditions
Recommended from our members
Characterization of organic aerosol across the global remote troposphere: A comparison of ATom measurements and global chemistry models
The spatial distribution and properties of submicron organic aerosol (OA) are among the key sources of uncertainty in our understanding of aerosol effects on climate. Uncertainties are particularly large over remote regions of the free troposphere and Southern Ocean, where very few data have been available and where OA predictions from AeroCom Phase II global models span 2 to 3 orders of magnitude, greatly exceeding the model spread over source regions. The (nearly) pole-to-pole vertical distribution of nonrefractory aerosols was measured with an aerosol mass spectrometer onboard the NASA DC-8 aircraft as part of the Atmospheric Tomography (ATom) mission during the Northern Hemisphere summer (August 2016) and winter (February 2017). This study presents the first extensive characterization of OA mass concentrations and their level of oxidation in the remote atmosphere. OA and sulfate are the major contributors by mass to submicron aerosols in the remote troposphere, together with sea salt in the marine boundary layer. Sulfate was dominant in the lower stratosphere. OA concentrations have a strong seasonal and zonal variability, with the highest levels measured in the lower troposphere in the summer and over the regions influenced by biomass burning from Africa (up to 10 Όgsm-3). Lower concentrations (~ 0:1 0.3 Όgsm-3) are observed in the northern middle and high latitudes and very low concentrations (< 0:1 Όgsm-3) in the southern middle and high latitudes. The ATom dataset is used to evaluate predictions of eight current global chemistry models that implement a variety of commonly used representations of OA sources and chemistry, as well as of the AeroCom-II ensemble. The current model ensemble captures the average vertical and spatial distribution of measured OA concentrations, and the spread of the individual models remains within a factor of 5. These results are significantly improved over the AeroCom-II model ensemble, which shows large overestimations over these regions. However, some of the improved agreement with observations occurs for the wrong reasons, as models have the tendency to greatly overestimate the primary OA fraction and underestimate the sec-ondary fraction. Measured OA in the remote free troposphere is highly oxygenated, with organic aerosol to organic carbon (OA= OC) ratios of ~ 2.2 2.8, and is 30 % 60% more oxygenated than in current models, which can lead to significant errors in OA concentrations. The model measurement comparisons presented here support the concept of a more dynamic OA system as proposed by Hodzic et al. (2016), with enhanced removal of primary OA and a stronger production of secondary OA in global models needed to provide better agreement with observations. © 2020 IEEE Computer Society. All rights reserved
- âŠ