313 research outputs found
Semantic Sentiment Analysis of Twitter Data
Internet and the proliferation of smart mobile devices have changed the way
information is created, shared, and spreads, e.g., microblogs such as Twitter,
weblogs such as LiveJournal, social networks such as Facebook, and instant
messengers such as Skype and WhatsApp are now commonly used to share thoughts
and opinions about anything in the surrounding world. This has resulted in the
proliferation of social media content, thus creating new opportunities to study
public opinion at a scale that was never possible before. Naturally, this
abundance of data has quickly attracted business and research interest from
various fields including marketing, political science, and social studies,
among many others, which are interested in questions like these: Do people like
the new Apple Watch? Do Americans support ObamaCare? How do Scottish feel about
the Brexit? Answering these questions requires studying the sentiment of
opinions people express in social media, which has given rise to the fast
growth of the field of sentiment analysis in social media, with Twitter being
especially popular for research due to its scale, representativeness, variety
of topics discussed, as well as ease of public access to its messages. Here we
present an overview of work on sentiment analysis on Twitter.Comment: Microblog sentiment analysis; Twitter opinion mining; In the
Encyclopedia on Social Network Analysis and Mining (ESNAM), Second edition.
201
SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods
In the last few years thousands of scientific papers have investigated
sentiment analysis, several startups that measure opinions on real data have
emerged and a number of innovative products related to this theme have been
developed. There are multiple methods for measuring sentiments, including
lexical-based and supervised machine learning methods. Despite the vast
interest on the theme and wide popularity of some methods, it is unclear which
one is better for identifying the polarity (i.e., positive or negative) of a
message. Accordingly, there is a strong need to conduct a thorough
apple-to-apple comparison of sentiment analysis methods, \textit{as they are
used in practice}, across multiple datasets originated from different data
sources. Such a comparison is key for understanding the potential limitations,
advantages, and disadvantages of popular methods. This article aims at filling
this gap by presenting a benchmark comparison of twenty-four popular sentiment
analysis methods (which we call the state-of-the-practice methods). Our
evaluation is based on a benchmark of eighteen labeled datasets, covering
messages posted on social networks, movie and product reviews, as well as
opinions and comments in news articles. Our results highlight the extent to
which the prediction performance of these methods varies considerably across
datasets. Aiming at boosting the development of this research area, we open the
methods' codes and datasets used in this article, deploying them in a benchmark
system, which provides an open API for accessing and comparing sentence-level
sentiment analysis methods
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
Overview of the CLEF-2019 Checkthat! LAB: Automatic identification and verification of claims. Task 2: Evidence and factuality
We present an overview of Task 2 of the second edition of the CheckThat! Lab at CLEF 2019. Task 2 asked (A) to rank a given set of Web pages with respect to a check-worthy claim based on their usefulness for fact-checking that claim, (B) to classify these same Web pages according to their degree of usefulness for fact-checking the target claim, (C) to identify useful passages from these pages, and (D) to use the useful pages to predict the claim's factuality. Task 2 at CheckThat! provided a full evaluation framework, consisting of data in Arabic (gathered and annotated from scratch) and evaluation based on normalized discounted cumulative gain (nDCG) for ranking, and F1 for classification. Four teams submitted runs. The most successful approach to subtask A used learning-to-rank, while different classifiers were used in the other subtasks. We release to the research community all datasets from the lab as well as the evaluation scripts, which should enable further research in the important task of evidence-based automatic claim verification
Dense vs. Sparse representations for news stream clustering
The abundance of news being generated on a daily basis has made it hard, if not impossible, to monitor all news developments. Thus, there is an increasing need for accurate tools that can organize the news for easier exploration. Typically, this means clustering the news stream, and then connecting the clusters into story lines. Here, we focus on the clustering step, using a local topic graph and a community detection algorithm. Traditionally, news clustering was done using sparse vector representations with TF\u2013IDF weighting, but more recently dense representations have emerged as a popular alternative. Here, we compare these two representations, as well as combinations thereof. The evaluation results on a standard dataset show a sizeable improvement over the state of the art both for the standard F1 as well as for a BCubed version thereof, which we argue is more suitable for the task
Prta: A System to Support the Analysis of Propaganda Techniques in the News
Recent events, such as the 2016 US Presidential Campaign, Brexit and the COVID-19 "infodemic", have brought into the spotlight the dangers of online disinformation. There has been a lot of research focusing on fact-checking and disinformation detection. However, little attention has been paid to the specific rhetorical and psychological techniques used to convey propaganda messages. Revealing the use of such techniques can help promote media literacy and critical thinking, and eventually contribute to limiting the impact of "fake news" and disinformation campaigns.Prta (Propaganda Persuasion Techniques Analyzer) allows users to explore the articles crawled on a regular basis by highlighting the spans in which propaganda techniques occur and to compare them on the basis of their use of propaganda techniques. The system further reports statistics about the use of such techniques, overall and over time, or according to filtering criteria specified by the user based on time interval, keywords, and/or political orientation of the media. Moreover, it allows users to analyze any text or URL through a dedicated interface or via an API. The system is available online: https://www.tanbih.org/prta
Thread-level information for comment classification in community question answering
Community Question Answering (cQA) is a new application of QA in social contexts (e.g., fora). It presents new interesting challenges and research directions, e.g., exploiting the dependencies between the different comments of a thread to select the best answer for a given question. In this paper, we explored two ways of modeling such dependencies: (i) by designing specific features looking globally at the thread; and (ii) by applying structure prediction models. We trained and evaluated our models on data from SemEval-2015 Task 3 on Answer Selection in cQA. Our experiments show that: (i) the thread-level features consistently improve the performance for a variety of machine learning models, yielding state-of-the-art results; and (ii) sequential dependencies between the answer labels captured by structured prediction models are not enough to improve the results, indicating that more information is needed in the joint model
Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. Task 2: Factuality
We present an overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims, with focus on Task 2: Factuality. The task asked to assess whether a given check-worthy claim made by a politician in the context of a debate/speech is factually true, half-true, or false. In terms of data, we focused on debates from the 2016 US Presidential Campaign, as well as on some speeches during and after the campaign (we also provided translations in Arabic), and we relied on comments and factuality judgments from factcheck.org and snopes.com, which we further refined manually. A total of 30 teams registered to participate in the lab, and five of them actually submitted runs. The most successful approaches used by the participants relied on the automatic retrieval of evidence from the Web. Similarities and other relationships between the claim and the retrieved documents were used as input to classifiers in order to make a decision. The best-performing official submissions achieved mean absolute error of .705 and .658 for the English and for the Arabic test sets, respectively. This leaves plenty of room for further improvement, and thus we release all datasets and the scoring scripts, which should enable further research in fact-checking
Overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. Task 1: Check-Worthiness
We present an overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims, with focus on Task 1: Check-Worthiness. The task asks to predict which claims in a political debate should be prioritized for fact-checking. In particular, given a debate or a political speech, the goal was to produce a ranked list of its sentences based on their worthiness for fact checking. We offered the task in both English and Arabic, based on debates from the 2016 US Presidential Campaign, as well as on some speeches during and after the campaign. A total of 30 teams registered to participate in the Lab and seven teams actually submitted systems for Task 1. The most successful approaches used by the participants relied on recurrent and multi-layer neural networks, as well as on combinations of distributional representations, on matchings claims' vocabulary against lexicons, and on measures of syntactic dependency. The best systems achieved mean average precision of 0.18 and 0.15 on the English and on the Arabic test datasets, respectively. This leaves large room for further improvement, and thus we release all datasets and the scoring scripts, which should enable further research in check-worthiness estimation
Overview of the CLEF-2018 checkthat! lab on automatic identification and verification of political claims
We present an overview of the CLEF-2018 CheckThat! Lab on Automatic Identification and Verification of Political Claims. In its starting year, the lab featured two tasks. Task 1 asked to predict which (potential) claims in a political debate should be prioritized for fact-checking; in particular, given a debate or a political speech, the goal was to produce a ranked list of its sentences based on their worthiness for fact-checking. Task 2 asked to assess whether a given check-worthy claim made by a politician in the context of a debate/speech is factually true, half-true, or false. We offered both tasks in English and in Arabic. In terms of data, for both tasks, we focused on debates from the 2016 US Presidential Campaign, as well as on some speeches during and after the campaign (we also provided translations in Arabic), and we relied on comments and factuality judgments from factcheck.org and snopes.com, which we further refined manually. A total of 30 teams registered to participate in the lab, and 9 of them actually submitted runs. The evaluation results show that the most successful approaches used various neural networks (esp. for Task 1) and evidence retrieval from the Web (esp. for Task 2). We release all datasets, the evaluation scripts, and the submissions by the participants, which should enable further research in both check-worthiness estimation and automatic claim verification
- …
