
Dense vs. Sparse Representations

for News Stream Clustering

Todor Staykovski1 Alberto Barrón-Cedeño2 Giovanni da San Martino2 Preslav Nakov2

Sofia University, Sofia, Bulgaria
todorstaykovski@gmail.com

Qatar Computing Research Institute, HBKU, Doha, Qatar
{albarron,gmartino,pnakov}@hbku.edu.qa

Abstract.

The abundance of news being generated on a daily basis has made it
hard, if not impossible, to monitor all news developments. Thus, there
is an increasing need for accurate tools that can organize the news for
easier exploration. Typically, this means clustering the news stream,
and then connecting the clusters into story lines. Here, we focus on the
clustering step, using a local topic graph and a community detection
algorithm. Traditionally, news clustering was done using sparse vector
representations with TF–IDF weighting, but more recently dense rep-
resentations have emerged as a popular alternative. Here, we compare
these two representations, as well as combinations thereof. The evalu-
ation results on a standard dataset show a sizeable improvement over
the state of the art both for the standard F1 as well as for a BCubed
version thereof, which we argue is more suitable for the task.

Keywords: stream clustering · dense representations · sparse repre-
sentations.

1 Introduction

The rise of Internet has led to the proliferation of news websites. The resulting information overload created
demand for systems, such as Google News, that could help organize the news, making them easier to analyze and
consume. The process typically starts with event detection; then, events are optionally connected into story lines
and arranged temporarily. Event detection in the news stream is an active research direction, which has attracted
a lot of attention recently. While a variety of approaches have been proposed, typically it was addressed using
clustering, where the articles are represented as vectors in a multi-dimensional space. Traditionally, a sparse
bag-of-words (BoW) representation has been used, weighted with term frequency–inverse document frequency
(TF–IDF) [LH17,MZCB18], but recently dense representations derived from word embeddings [LM14] have
emerged as a viable alternative [BMZ+18,HKMA16].

Below, we compare the use of sparse vs. dense representations, as well as combinations thereof, on a stan-
dard benchmark dataset for news stream clustering. As a baseline, we re-implement a pre-existing system:
newsLens [LH17]. Then, we improve this system, and we experiment with sparse representations based on BoWs
as in [MZCB18]. We further try dense representations based on doc2vec [LM14] as proposed in [BMZ+18]. Fi-
nally, we experiment with combining sparse and dense representations. The experimental results on a standard
dataset show a sizable improvement over the state of the art both in terms of standard F1 as well as of a BCubed
version thereof, which we argue is more suitable for the task.

Copyright c© 2019 for the individual papers by the paper’s authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

In: A. Jorge, R. Campos, A. Jatowt, S. Bhatia (eds.): Proceedings of the Text2StoryIR’19 Workshop, Cologne, Germany,
14-April-2019, published at http://ceur-ws.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Alma Mater Studiorum Università di Bologna

https://core.ac.uk/display/275905728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The rest of this paper is organized as follows: Section 2 gives a brief overview of relevant previous work.
Section 3 describes the core system based on newsLens and the different representations for the news articles.
Section 4 presents our experiments and discusses the evaluation results. Finally, Section 5 concludes and points
to possible directions for future work.

2 Related Work

The Topic Detection and Tracking (TDT) task aims to help search and organize news-oriented textual material
from a variety of broadcast news media. In particular, it asks to cluster news into topics, which are commonly
called stories. Below, we describe three systems that are closely related to our work here.

Laban and Hearst [LH17] proposed newsLens, a system for organizing a large dataset of news articles into a
collection of major stories. Their topic detection algorithm creates local clusters based on keywords extracted
from the articles. The system further visualizes the story timelines, showing important information about the
story. However, the performance of their algorithm was not formally evaluated, and here we fill this gap by
testing our reimplementation thereof on a standard benchmark dataset.

Miranda et al. [MZCB18] focused on clustering a stream of news articles in English, Spanish and German.
They used vector representation for the articles and built clusters by maintaining two types of centroid functions
for each monolingual cluster. For their experiments, they adapted a dataset from [RML+16], and they processed
it to turn it into a collection of articles annotated with monolingual and cross-lingual cluster labels, where story
clusters are about particular events. They evaluated their model on the test part of their dataset. We use the
English partition of the dataset and we compare our results against theirs.

Barrón-Cedeño et al. [BMZ+18] generated short video overviews describing the coverage of the same event by
different news outlets automatically. Four modules were involved in the video production: event identification,
de-duplication, coverage diversification, and image gathering. The end user was provided with illustrated videos
aiming to present different viewpoints for the coverage of the same event. Unlike the above work, their clustering
algorithm represents the individual news articles using doc2vec embeddings [LM14].

3 Models

We re-implemented, to the best of our ability, the relevant core modules of the newsLens system [LH17], and we
consider this reimplementation as our baseline.

The pipeline of newsLens has several stages: (i) extracting keywords from the articles, (ii) identifying local
topics (clusters), and (iii) merging long-term topics to give rise to stories. Each document is represented as
a bag-of-words vector and weighted with TF–IDF. A word wi is selected as a keyword for document dj if its
TF–IDF score is higher than a manually set threshold Tnl

0 , where the superscript nl stands for newsLens. Two
articles are included in the same topic if they share several keywords and have close dates of publication. The
articles are grouped into common local topics by building a graph. Articles (ai, aj) are linked by an edge in the
graph if they have sufficient overlap in keywords: |kwi ∩ kwj | ≥ T1, where Tnl

1 is another manually-set threshold.
The local topics graph is further refined using a community detection algorithm, following the Louvain method
[BGLL08]. After the local topics have been created, a topic-matching process is used for stories that might be
interrupted in time. Two topics are merged into a story if they do not overlap in time, but are similar in terms
of keyword distribution. Each topic is represented by a vector v(ti) for topic ti, which contains the number of
keywords in all articles about topic ti. The similarity between a new and an old topic is computed using cosine.
If it is above a threshold Tnl

2 , the topics are merged.

In our algorithm, we consider only the modules for identification of local topics and for matching long-term
topics, which we enhance as described below.

3.1 Identification of Local Topics

The local topics clustering module is responsible for creating the preliminary clusters of news articles. Its input
consists of overlapping windows, each spanning n consecutive days. The outcome is a graph G = (V,E) where V
is the set of vertices —the news articles— and E is the set of edges. An edge between two articles {di, dj} ∈ V
exists only if sim(di, dj) ≥ T1, where sim is the cosine similarity computed over representations of the articles
and T1 is an empirically set threshold. We explore both sparse and dense vectorial representations.

Table 1. Statistics about the training and the testing partitions of the English part of the news corpus [MZCB18]: shown
are the number of articles, the average number of tokens per article, the total number of clusters, and the average cluster
size (± standard deviation).

Partition Docs Tokens Clusters Cluster Size

Train 12,233 434±364 593 21±32
Test 8,726 521±495 222 39±88

For the sparse representation, we compute TF–IDF vectors. The preprocessing in this case consists of case-
folding, lemmatization1, punctuation removal, and stopwording. For the latter, we use a pre-defined list [SDK10]
and we combine it with a list of the words with a document frequency higher than 85% in the training set. We
consider different parts of the documents to build the vectors: (i) the titles, (ii) the bodies, (iii) and both.

For the dense representation, we compute 300-dimensional doc2vec vectors [LM14], which we train on the
Signal Media One-million news articles corpus [CAMM16], which contains 265,512 blog articles and 734,488
news articles from 93k unique sources over a period of one month. We use the same preprocessing as before.

We merged the sequence of overlapping local graphs in the order of their creation.

3.2 Community detection

Following [LH17], in order to avoid merging topics that are loosely connected, we further refined the topics graph
structure using a community detection algorithm: the Louvain method [BGLL08]. Due to the comparison of the
similarities in a spanning window, it is possible for different densely connected topics to connect erroneously. The
role of the community detection algorithm is to find the correct assignment of the nodes into communities. It
detects communities in networks using a heuristic that maximizes the modularity of the obtained communities.
The modularity of a partition is a scalar value between −1 and 1 that measures the density of links inside
communities as compared to links between communities [BGLL08].

3.3 Matching Long-Term Topics

The input to this module are the clusters generated across the different n-day windows from the previous module.
The objective now is to identify long-term stories that might have been interrupted for a period of time. Two
local topics coming from non-overlapping windows are merged if the cosine similarity sim(ti, tj) ≥ T2, where ti
(tj) is the mean of all vectors belonging to topic i (j) and T2 is an empirically set threshold.

4 Experiments and Evaluation

In this section, we describe the dataset, the evaluation measure, the experimental setup, and the evaluation
results.

4.1 Dataset

For our experiments, we use the corpus from [MZCB18]. It is a collection of 33,807 news articles with streaming
clusters identified across three languages: English, Spanish, and German. We use the English part, which contains
20,959 documents, and the original training–test split. Table 1 reports some statistics about this dataset. The
training partition includes articles in the time interval from December 18, 2013 to February 2, 2014, while the
articles in the test set come between November 2, 2014 and August 25, 2015. Whereas in the training partition
there are numerous gaps with an average of three days without an article, in the test partition the gaps can be
as long as 3 months. This is an important factor to take into account when trying to identify long-term topics.

4.2 Evaluation

For evaluating our models, we use the BCubed versions of precision, recall and F1-measure [AGAV09]. BCubed
measures favor solutions that (i) split a cluster that mixes two categories into two pure clusters (cluster homo-
geneity), (ii) unify two clusters that contain only items from the same category (cluster completeness), (iii) add
an item of a different category to an already noisy cluster instead of a pure one, and (iv) make small errors in a
big cluster rather than a large number of small errors in small clusters.

1 We use the NLTK lemmatizer [BLK09].

The BCubed measures are defined as follows. Let Li be the category of document i and Ci be the cluster of
document i. The relation correctness between documents i and j is calculated as follows:

Correctness(i, j) =

{
1, if Li = Lj and Ci = Cj

0, Otherwise
(1)

The BCubed precision of a document is the proportion of documents in its cluster that belong to the same
category, including itself. The BCubed recall of a document is the proportion of documents belonging to the
same category that appear in its cluster. The overall BCubed precision and recall are computed as follows:

BCubed P = Avgi[Avgi.Ci=Cj
[Correctness(i, j)]]

BCubed R = Avgi[Avgi.Li=Lj
[Correctness(i, j)]]

(2)

Additionally to these measures, we also report the standard versions of precision and recall:2

P =
tp

tp + fp
R =

tp

tp + fn
(3)

where tp, fp, and fn stand for true positives, false positives, and false negatives, respectively.
Both the BCubed and the standard F1-measure are computed as the harmonic mean of precision and recall:

F1 = 2 ∗ P ∗R
P + R

BCubed F1 = 2 ∗ BCubed P ∗ BCubed R

BCubed P + BCubed R
(4)

4.3 Experimental Setup

We tuned the hyper-parameters of our model using a temporal 4-fold cross-validation on the training set.
We used grid search optimizing for F1, exploring n = [4, 5, 6] for the size of the sliding window, and
T1 ∈ {0.10, 0.11, . . . , 0.50} and T2 ∈ {0.60, 0.61, . . . , 0.90} for the thresholds. We found different values for T1 for
the different experiments, due to the different models for identification of local topics; yet, we always obtained
the same values for n = 6, T2 = 0.8 and 50% window overlap, as best performing in the preliminary tests.

4.4 Results

Table 2 reports the results obtained on the test partition. For each model, only the results with the best tuning
during the cross-validation are shown. We include two baselines. The first one is our implementation of newsLens,
using the same parameters as in [LH17]: Tnl

1 = 3 and Tnl
2 = 0.8. The second baseline is the out-of-the-box system

of [MZCB18], which is shared in their repository. In all cases, except for [MZCB18], we use Louvain’s community
detection algorithm (cf. Section 3.2).

We explored applying the TF–IDF sparse representation to the title, to the contents, and both to the title
and to the contents of the articles. We ontained best results for the latter, and these are the ones we report in
the TF–IDF rows (with T1 = 0.31). This representation yielded BCubed F1 = 94.41, outperforming all other
models.

We conducted several experiments using the dense doc2vec representation, including an embedding model
trained on the training dataset only. For this, we needed a larger reference corpus [CAMM16] to achieve com-
petitive results, but still not as strong, with a BCubed F1 = 89.96 (with T1 = 0.32). Whereas the TF-IDF model
yields roughly twice as many clusters that actually exist in the dataset, this model generates 785 clusters. This
is a clear sign that the model fails to merge sub-clusters into single stories.

Finally, we combined the sparse and the dense vector representations in two ways: (i) concatenating the two
vectors, and (ii) combining the output of the TF–IDF and of the doc2vec-based clusters. The latter worked
better, and this is what we report in the table. The best performance is obtained with T1 = 0.32 for the TF–IDF
representation and T1 = 0.25 for the doc2vec representation: BCubed F1 = 92.97.

As the grid search to tune the best thresholds can be computationally expensive, we also tried converting the
task into a supervised problem. We represented pairs of documents on the basis of their similarities computed on
the TF–IDF and on the doc2vec representations and we labeled them as true if they originally belonged to the
same cluster, and as false otherwise. We further divided this resulting dataset into training and testing partitions
to train a logistic regression (LR) model with a sigmoid activation function.

2 We use the implementation released with the corpus [MZCB18].

Table 2. Results for the different models on the test partition in terms of standard and BCubed F1-measure, precision,
and recall. The last column reports the obtained number of clusters generated by each model; the actual number of
clusters in the dataset is 222.

BCubed
model F1 P R F1 P R clusters

baselines
newsLens [LH17] 89.76 94.37 85.58 95.09 95.90 94.30 873
Miranda et al. [MZCB18] 92.36 94.57 90.25 94.03 98.14 90.25 326

unsupervised
TF-IDF 94.41 95.16 93.66 98.11 97.60 98.63 484
doc2vec 89.96 93.00 87.12 95.44 95.55 95.34 785
TF-IDF & doc2vec 92.97 95.75 90.34 97.61 97.73 97.48 663

supervised (LR)
TF-IDF 94.30 94.87 93.73 98.08 97.46 98.71 485
TF-IDF & doc2vec 93.67 92.71 94.65 97.15 95.39 98.98 431

The last two rows of Table 2 show the results of the experiments using logistic regression with TF–IDF
similarity alone and in combination with doc2vec similarity as input. The supervised model TF–IDF & doc2vec
shows an improvement of over 0.7 points absolute in terms of BCubed F1-measure over the standard approach
(93.67 vs. 92.97). This model is the one that generates the least clusters, a number that is also closer to the
actual number to be found. On the other hand, the experiment with supervised TF–IDF achieved worse BCubed
F1 = 94.30, comparing to the unsupervised BCubed F1 = 94.41.

Finally, in order to investigate the impact of the Louvain community detection algorithm, Table 3 shows the
results of applying it on the TF–IDF model in two ways: (i) before and (ii) after merging two local topics graphs
(cf. end of Section 3.1). We can see that the latter works better; we observed similar results for most of our
models.

Table 3. Result of applying Louvain’s community detection algorithm on the TF-IDF clustering model before vs. after
the local topics merging.

BCubed
F1 P R F1 P R clusters

before 91.55 93.76 89.44 94.36 95.55 93.20 488
after 94.41 95.16 93.66 98.11 97.60 98.63 484

5 Conclusion and Future Work

We have presented an algorithm for clustering news streams, which is an improved version of a previously proposed
general framework. We further compared sparse vector representations with TF–IDF weighting vs. doc2vec-based
dense representations, as well as combinations thereof. The evaluation results on a standard dataset have shown
sizable improvements over the state of the art both for the standard F1 score as well as for a BCubed version
thereof, which we argue is more suitable for the task.

In future work, we plan to improve the process of topic matching. This would require us to build a dataset
with news stories that seemingly die, but then reemerge with large gaps in time.

References

[AGAV09] Enrique Amig, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. A comparison of extrinsic clustering evaluation
metrics based on formal constraints. Information Retrieval, 12:461–486, 2009.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), 2008.

[BLK09] Steven Bird, Edward Loper, and Ewan Klein. Natural Language Processing with Python. OReilly Media Inc.,
2009.

[BMZ+18] Alberto Barrón-Cedeño, Giovanni Da San Martino, Yifan Zhang, Ahmed M. Ali, and Fahim Dalvi. Qlusty:
Quick and dirty generation of event videos from written media coverage. In Proceedings of the Second Inter-
national Workshop on Recent Trends in News Information Retrieval, pages 27–32, Grenoble, France, 2018.

[CAMM16] David Corney, Dyaa Albakour, Miguel Martinez, and Samir Moussa. What do a million news articles look
like? In Proceedings of the First International Workshop on Recent Trends in News Information Retrieval,
pages 42–47, Padua, Italy, 2016.

[HKMA16] Kazuma Hashimoto, Georgios Kontonatsios, Makoto Miwa, and Sophia Ananiadou. Topic detection using
paragraph vectors to support active learning in systematic reviews. Journal of Biomedical Informatics, 62, 06
2016.

[LH17] Philippe Laban and Marti Hearst. newsLens: Building and visualizing long-ranging news stories. In Proceedings
of the Events and Stories in the News Workshop, pages 1–9, Vancouver, Canada, 2017.

[LM14] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings of the
31st International Conference on Machine Learning, volume 32 of ICML ’14, pages 1188–1196, Bejing, China,
2014.

[MZCB18] Sebastião Miranda, Arturs Znotins, Shay B. Cohen, and Guntis Barzdins. Multilingual clustering of streaming
news. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’18,
pages 4535–4544, Brussels, Belgium, 2018.

[RML+16] Jan Rupnik, Andrej Muhic, Gregor Leban, Primoz Skraba, Blaz Fortuna, and Marko Grobelnik. News across
languages - cross-lingual document similarity and event tracking. J. Artif. Intell. Res., 55:283–316, 2016.

[SDK10] Benjamin Stone, Simon Dennis, and Peter J. Kwantes. Comparing methods for single paragraph similarity
analysis. Topics in Cognitive Science, 3:92–122, 2010.

