412 research outputs found

    A Study of Fracture in a Rotating Disc

    Get PDF
    This investigation deals with the fracture produced in a disc by simple rotation cycles as well as rotation cycles under an imposed hydrostatic pressure. In both the cases, relations are obtained between the critical angular speed omega and the number of cycles N, required to cause fracture

    A Note on waves Generated at a Liquid Solid Interface-II (Viscous Effects)

    Get PDF
    This paper, being a continuation of a previous note of the same title, deals with the effect of viscosity on the interface waves propagated in a liquid layer overlying a generalized thermoelastic solid halfspace. This note extends the results of Harinath and has applications to defence science and geophysical problems. The problem considered has more relevance to the physical situations encountered in reality than its elastic counterpart. In other words, generalized thermoelasticity fits into the realistic situation better than classical elasticity or coupled thermoelasticity. The details pertaining to the non viscous effects of liquid layer overlying a perfectly elastic halfspace may be found in the treatise by Ewing, Jardetzky and Press those of coupled thermoelasticity in the treatise by Nowacki and details of wave propagation problems in generalized thermoelasticity in the concise paper by Harinath. The stress strain relations used for a viscous fluid may be found in Pipkin, with slight modifications, without any loss in generality. Most of the results obtained here are new

    Motility of small nematodes in disordered wet granular media

    Full text link
    The motility of the worm nematode \textit{Caenorhabditis elegans} is investigated in shallow, wet granular media as a function of particle size dispersity and area density (ϕ\phi). Surprisingly, we find that the nematode's propulsion speed is enhanced by the presence of particles in a fluid and is nearly independent of area density. The undulation speed, often used to differentiate locomotion gaits, is significantly affected by the bulk material properties of wet mono- and polydisperse granular media for ϕ≥0.55\phi \geq 0.55. This difference is characterized by a change in the nematode's waveform from swimming to crawling in dense polydisperse media \textit{only}. This change highlights the organism's adaptability to subtle differences in local structure and response between monodisperse and polydisperse media

    Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity

    Full text link
    We investigate several quantifiers of the electroencephalogram (EEG) signal with respect to their ability to indicate depth of anesthesia. For 17 patients anesthetized with Sevoflurane, three established measures (two spectral and one based on the bispectrum), as well as a phase space based nonlinear correlation index were computed from consecutive EEG epochs. In absence of an independent way to determine anesthesia depth, the standard was derived from measured blood plasma concentrations of the anesthetic via a pharmacokinetic/pharmacodynamic model for the estimated effective brain concentration of Sevoflurane. In most patients, the highest correlation is observed for the nonlinear correlation index D*. In contrast to spectral measures, D* is found to decrease monotonically with increasing (estimated) depth of anesthesia, even when a "burst-suppression" pattern occurs in the EEG. The findings show the potential for applications of concepts derived from the theory of nonlinear dynamics, even if little can be assumed about the process under investigation.Comment: 7 pages, 5 figure

    Financial correlations at ultra-high frequency: theoretical models and empirical estimation

    Full text link
    A detailed analysis of correlation between stock returns at high frequency is compared with simple models of random walks. We focus in particular on the dependence of correlations on time scales - the so-called Epps effect. This provides a characterization of stochastic models of stock price returns which is appropriate at very high frequency.Comment: 22 pages, 8 figures, 1 table, version to appear in EPJ

    Combination of IFNα and poly-I: C reprograms bladder cancer microenvironment for enhanced CTL attraction

    Get PDF
    Background: BCG is a prototypal cancer immunotherapeutic factor currently approved of bladder cancer. In attempt to further enhance the effectiveness of immunotherapy of bladder cancer and, potentially, other malignancies, we evaluated the impact of BCG on local production of chemokines attracting the desirable effector CD8+ T cells (CTLs) and undesirable myeloid-derived suppressor cell (MDSCs) and regulatory T(reg) cells, and the ability of bladder cancer tissues to attract CTLs.Methods: Freshly resected bladder cancer tissues were either analyzed immediately or cultured ex vivo in the absence or presence of the tested factors. The expression of chemokine genes, secretion of chemokines and their local sources in freshly harvested and ex vivo-treated tumor explants were analyzed by quantitative PCR (Taqman), ELISAs and immunofluorescence/confocal microscopy. Migration of CTLs was evaluated ex vivo, using 24-transwell plates. Spearman correlation was used for correlative analysis, while paired Students T test or Wilcoxon was used for statistical analysis of the data.Results: Bladder cancer tissues spontaneously expressed high levels of the granulocyte/MDSC-attractant CXCL8 and Treg-attractant CCL22, but only marginal levels of the CTL-attracting chemokines: CCL5, CXCL9 and CXCL10. Baseline CXCL10 showed strong correlation with local expression of CTL markers. Unexpectedly, BCG selectively induced only the undesirable chemokines, CCL22 and CXCL8, but had only marginal impact on CXCL10 production. In sharp contrast, the combination of IFNα and a TLR3 ligand, poly-I:C (but not the combinations of BCG with IFNα or BCG with poly-I:C), induced high levels of intra-tumoral production of CXCL10 and promoted CTL attraction. The combination of BCG with IFNα + poly-I:C regimen did not show additional advantage.Conclusions: The current data indicate that suboptimal ability of BCG to reprogram cancer-associated chemokine environment may be a factor limiting its therapeutic activity. Our observations that the combination of BCG with (or replacement by) IFNα and poly-I:C allows to reprogram bladder cancer tissues for enhanced CTL entry may provide for new methods of improving the effectiveness of immunotherapy of bladder cancer, helping to extend BCG applications to its more advanced forms, and, potentially, other diseases

    Dosage-Dependent Phenotypes in Models of Human 16p11.2 Lesions Found in Autism

    Get PDF
    Recurrent copy number variations (CNVs) of human 16p11.2 have been associated with a variety of developmental/neurocognitive syndromes. In particular, deletion of 16p11.2 is found in patients with autism, developmental delay, and obesity. Patients with deletions or duplications have a wide range of clinical features, and siblings carrying the same deletion often have diverse symptoms. To study the consequence of 16p11.2 CNVs in a systematic manner, we used chromosome engineering to generate mice harboring deletion of the chromosomal region corresponding to 16p11.2, as well as mice harboring the reciprocal duplication. These 16p11.2 CNV models have dosage-dependent changes in gene expression, viability, brain architecture, and behavior. For each phenotype, the consequence of the deletion is more severe than that of the duplication. Of particular note is that half of the 16p11.2 deletion mice die postnatally; those that survive to adulthood are healthy and fertile, but have alterations in the hypothalamus and exhibit a “behavior trap” phenotype—a specific behavior characteristic of rodents with lateral hypothalamic and nigrostriatal lesions. These findings indicate that 16p11.2 CNVs cause brain and behavioral anomalies, providing insight into human neurodevelopmental disorders

    p130Cas is an essential transducer element in ErbB2 transformation

    Get PDF
    The ErbB2 oncogene is often overexpressed in breast tumors and associated with poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration, and proliferation in normal and pathological cells. The functional role of p130Cas in ErbB2-dependent breast tumorigenesis was assessed by its silencing in breast cancer cells derived from mouse mammary tumors overexpressing ErbB2 (N202-1A cells), and by its reexpression in ErbB2-transformed p130Cas-null mouse embryonic fibroblasts. We demonstrate that p130Cas is necessary for ErbB2-dependent foci formation, anchorage-independent growth, and in vivo growth of orthotopic N202-1A tumors. Moreover, intranipple injection of p130Cas-stabilized siRNAs in the mammary gland of Balbc-NeuT mice decreases the growth of spontaneous tumors. In ErbB2-transformed cells, p130Cas is a crucial component of a functional molecular complex consisting of ErbB2, c-Src, and Fak. In human mammary cells, MCF10A.B2, the concomitant activation of ErbB2, and p130Cas overexpression sustain and strengthen signaling, leading to Rac1 activation and MMP9 secretion, thus providing invasive properties. Consistently, p130Cas drives N202-1A cell in vivo lung metastases colonization. These results demonstrate that p130Cas is an essential transducer in ErbB2 transformation and highlight its potential use as a novel therapeutic target in ErbB2 positive human breast cancers.-Cabodi, S., Tinnirello, A., Bisaro, B., Tornillo, G., Camacho-Leal, M. P., Forni, G., Cojoca, R., Iezzi, M., Amici, A., Montani, M., Eva, A., Di Stefano, P., Muthuswamy, S. K., Tarone, G., Turco, E., Defilippi, P. p130Cas is an essential transducer element in ErbB2 transformation

    IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells

    Get PDF
    Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al

    Chaotic memristor

    Get PDF
    We suggest and experimentally demonstrate a chaotic memory resistor (memristor). The core of our approach is to use a resistive system whose equations of motion for its internal state variables are similar to those describing a particle in a multi-well potential. Using a memristor emulator, the chaotic memristor is realized and its chaotic properties are measured. A Poincar\'{e} plot showing chaos is presented for a simple nonautonomous circuit involving only a voltage source directly connected in series to a memristor and a standard resistor. We also explore theoretically some details of this system, plotting the attractor and calculating Lyapunov exponents. The multi-well potential used resembles that of many nanoscale memristive devices, suggesting the possibility of chaotic dynamics in other existing memristive systems.Comment: Applied Physics A (in press
    • …
    corecore