164 research outputs found

    Quantum double and κ\kappa-Poincar\'e symmetries in (2+1)-gravity and Chern-Simons theory

    Full text link
    We review the role of Drinfeld doubles and kappa-Poincare symmetries in quantised (2+1)-gravity and Chern-Simons theory. We discuss the conditions under which a given Hopf algebra symmetry is compatible with a Chern-Simons theory and determine this compatibility explicitly for the Drinfeld doubles and kappa-Poincare symmetries associated with the isometry groups of (2+1)-gravity. In particular, we explain that the usual kappa-Poincare symmetries with a timelike deformation are not directly associated with (2+1)-gravity. These kappa-Poincare symmetries are linked to Chern-Simons theory only in the de Sitter case, and the relevant Chern-Simons theory is physically inequivalent to (2+1)-gravity.Comment: 11 pages, no figures, expanded version of talk at the conference Theory Canada 4, references and explanations added, typos correcte

    Geometrical (2+1)-gravity and the Chern-Simons formulation: Grafting, Dehn twists, Wilson loop observables and the cosmological constant

    Get PDF
    We relate the geometrical and the Chern-Simons description of (2+1)-dimensional gravity for spacetimes of topology R×SgR\times S_g, where SgS_g is an oriented two-surface of genus g>1g>1, for Lorentzian signature and general cosmological constant and the Euclidean case with negative cosmological constant. We show how the variables parametrising the phase space in the Chern-Simons formalism are obtained from the geometrical description and how the geometrical construction of (2+1)-spacetimes via grafting along closed, simple geodesics gives rise to transformations on the phase space. We demonstrate that these transformations are generated via the Poisson bracket by one of the two canonical Wilson loop observables associated to the geodesic, while the other acts as the Hamiltonian for infinitesimal Dehn twists. For spacetimes with Lorentzian signature, we discuss the role of the cosmological constant as a deformation parameter in the geometrical and the Chern-Simons formulation of the theory. In particular, we show that the Lie algebras of the Chern-Simons gauge groups can be identified with the (2+1)-dimensional Lorentz algebra over a commutative ring, characterised by a formal parameter ΘΛ\Theta_\Lambda whose square is minus the cosmological constant. In this framework, the Wilson loop observables that generate grafting and Dehn twists are obtained as the real and the ΘΛ\Theta_\Lambda-component of a Wilson loop observable with values in the ring, and the grafting transformations can be viewed as infinitesimal Dehn twists with the parameter ΘΛ\Theta_\Lambda.Comment: 50 pages, 6 eps figure

    Boundary conditions and symplectic structure in the Chern-Simons formulation of (2+1)-dimensional gravity

    Full text link
    We propose a description of open universes in the Chern-Simons formulation of (2+1)-dimensional gravity where spatial infinity is implemented as a puncture. At this puncture, additional variables are introduced which lie in the cotangent bundle of the Poincar\'e group, and coupled minimally to the Chern-Simons gauge field. We apply this description of spatial infinity to open universes of general genus and with an arbitrary number of massive spinning particles. Using results of [9] we give a finite dimensional description of the phase space and determine its symplectic structure. In the special case of a genus zero universe with spinless particles, we compare our result to the symplectic structure computed by Matschull in the metric formulation of (2+1)-dimensional gravity. We comment on the quantisation of the phase space and derive a quantisation condition for the total mass and spin of an open universe.Comment: 44 pages, 3 eps figure

    Organizational design for knowledge exchange : the Hau-Ba model

    Get PDF
    Knowledge transfer, especially its intrinsic nature, is central to research. A key concept for such inquiry has been ba (Japanese roughly meaning “place” in English), which in terms of knowledge transfer can be thought of as a shared space for knowledge creation. As defined by Nonaka and Konno (Calif Manag Rev, 40(3):40–54, 1998), ba underscores the importance of achieving dynamic interaction, but they do not analytically explain the modalities involved. The authors of this chapter outline an analytical framework for comprehending the sequence of knowledge transfer between members of professional communities and ask whether a system of global organizational knowledge exchange exists. This new topic in knowledge management raises the issue of organizational design and governance, with knowledge management possibly requiring the ability to provide appropriate spaces and animate communities of actors joined by a common spirit and identity. To link these dimensions, the authors develop a theoretical model, the hau-ba theory (Bounfour, Systèmes d’Information et Manag, 5(2):12–40, 2000; Connaissance, reconnaissance et “communautalisme” [Knowledge, recognition and “communautalism”]. In: Bounfour A (ed) Capital immatériel, connaissance et performance. L’Harmattan, Paris, pp 167–194, 2006), and explore its application to the foundry of a large aluminum company

    Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes

    No full text
    We construct the full quantum algebra, the corresponding Poisson-Lie structure and the associated quantum spacetime for a family of quantum deformations of the isometry algebras of the (2+1)-dimensional anti-de Sitter (AdS), de Sitter (dS) and Minkowski spaces. These deformations correspond to a Drinfel'd double structure on the isometry algebras that are motivated by their role in (2+1)-gravity. The construction includes the cosmological constant Λ as a deformation parameter, which allows one to treat these cases in a common framework and to obtain a twisted version of both space- and time-like κ-AdS and dS quantum algebras; their flat limit Λ→0 leads to a twisted quantum Poincaré algebra. The resulting non-commutative spacetime is a nonlinear Λ-deformation of the κ-Minkowski one plus an additional contribution generated by the twist. For the AdS case, we relate this quantum deformation to two copies of the standard (Drinfel'd-Jimbo) quantum deformation of the Lorentz group in three dimensions, which allows one to determine the impact of the twist

    Background-Independence

    Get PDF
    Intuitively speaking, a classical field theory is background-independent if the structure required to make sense of its equations is itself subject to dynamical evolution, rather than being imposed ab initio. The aim of this paper is to provide an explication of this intuitive notion. Background-independence is not a not formal property of theories: the question whether a theory is background-independent depends upon how the theory is interpreted. Under the approach proposed here, a theory is fully background-independent relative to an interpretation if each physical possibility corresponds to a distinct spacetime geometry; and it falls short of full background-independence to the extent that this condition fails.Comment: Forthcoming in General Relativity and Gravitatio

    Ponzano-Regge model revisited III: Feynman diagrams and Effective field theory

    Full text link
    We study the no gravity limit G_{N}-> 0 of the Ponzano-Regge amplitudes with massive particles and show that we recover in this limit Feynman graph amplitudes (with Hadamard propagator) expressed as an abelian spin foam model. We show how the G_{N} expansion of the Ponzano-Regge amplitudes can be resummed. This leads to the conclusion that the dynamics of quantum particles coupled to quantum 3d gravity can be expressed in terms of an effective new non commutative field theory which respects the principles of doubly special relativity. We discuss the construction of Lorentzian spin foam models including Feynman propagatorsComment: 46 pages, the wrong file was first submitte

    Chlamydophila abortus Pelvic Inflammatory Disease

    Get PDF
    We report the first documented case of an extragestational infection with Chlamydophila abortus in humans. The pathogen was identified in a patient with severe pelvic inflammatory disease (PID) by sequence analysis of the ompA gene. Our findings raise the possibility that Chlamydiaceae other than Chlamydia trachomatis are involved in PID

    Euclidean three-point function in loop and perturbative gravity

    Full text link
    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of gamma<1. We find results consistent with Regge calculus in the limit gamma->0 and j->infinity. We also compute the tree-level three-point function of perturbative quantum general relativity in position space, and discuss the possibility of directly comparing the two results.Comment: 16 page
    corecore