122 research outputs found
Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities
In the field of cavity optomechanics, proposals for quantum nondemolition (QND) measurements of phonon number provide a promising avenue by which one can study the quantum nature of nanoscale mechanical resonators. Here we investigate these QND measurements for an optomechanical system whereby quadratic coupling arises due to shared symmetries between a single optical resonance and a mechanical mode. We establish a relaxed limit on the amount of linear coupling that can exist in this type of system while still allowing for QND measurements of mechanical Fock states. The ability to perform optomechanical QND measurements of this nature would allow one to probe the decoherence of these mesoscopic states, providing an experimental test bed for quantum collapse theories
Global risk model for vector-borne transmission of Zika virus reveals the role of El Nino 2015
Zika, a mosquito-borne viral disease that emerged in South America in 2015, was declared a Public Health Emergency of International Concern by the WHO in February of 2016. We developed a climate-driven R(0) mathematical model for the transmission risk of Zika virus (ZIKV) that explicitly includes two key mosquito vector species: Aedes aegypti and Aedes albopictus. The model was parameterized and calibrated using the most up to date information from the available literature. It was then driven by observed gridded temperature and rainfall datasets for the period 1950–2015. We find that the transmission risk in South America in 2015 was the highest since 1950. This maximum is related to favoring temperature conditions that caused the simulated biting rates to be largest and mosquito mortality rates and extrinsic incubation periods to be smallest in 2015. This event followed the suspected introduction of ZIKV in Brazil in 2013. The ZIKV outbreak in Latin America has very likely been fueled by the 2015–2016 El Niño climate phenomenon affecting the region. The highest transmission risk globally is in South America and tropical countries where Ae. aegypti is abundant. Transmission risk is strongly seasonal in temperate regions where Ae. albopictus is present, with significant risk of ZIKV transmission in the southeastern states of the United States, in southern China, and to a lesser extent, over southern Europe during the boreal summer season
The 2017 Plasma Roadmap: Low temperature plasma science and technology
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.I Adamovich et al 2017 J. Phys. D: Appl. Phys. 50 32300
Determination of Cellular Lipids Bound to Human CD1d Molecules
CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species), and cardiolipins (tetraacyl species). The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death
Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19:a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK
Background Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. Methods We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. Findings 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05–1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08–1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60–0·72] for those without asthma and 0·74 [0·62–0·87] for those with asthma; p<0·0001 for both). In patients aged 16–49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73–1·86] for those on no asthma therapy, 0·99 [0·61–1·58] for those on SABAs only, 0·94 [0·62–1·43] for those on inhaled corticosteroids only, 1·02 [0·67–1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25–3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12–1·22] for those not on inhaled corticosteroids, and 1·10 [1·04–1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04–1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80−0·92]). Interpretation Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease
Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study.
BACKGROUND: Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions. METHODS: We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal-external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London). FINDINGS: 74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal-external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [-0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than any other reproducible prognostic model. INTERPRETATION: The 4C Deterioration model has strong potential for clinical utility and generalisability to predict clinical deterioration and inform decision making among adults hospitalised with COVID-19. FUNDING: National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, NIHR HPRU in Respiratory Infections at Imperial College London
Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England.
Background: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient’s “bed pathway” - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. Methods: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. Results: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: “Ward, CC, Ward”, “Ward, CC”, “CC” and “CC, Ward”. Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. Conclusions: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19. Trial registration: The ISARIC WHO CCP-UK study ISRCTN66726260 was retrospectively registered on 21/04/2020 and designated an Urgent Public Health Research Study by NIHR.</p
- …