979 research outputs found
Slat Cove Unsteadiness Effect of 3D Flow Structures
Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise
Experimental validation of the quadratic constitutive relation in supersonic streamwise corner flows
The quadratic constitutive relation is a simple extension to the linear eddy-viscosity hypothesis and has shown some promise in improving the computation of flow along streamwise corner geometries. In order to further investigate these improvements, the quadratic model is validated by comparing RANS simulations of a Mach 2.5 wind tunnel flow with high-quality experimental velocity data. Careful set up and assessment of computations using detailed characterisation data of the overall flow field suggests a minimum expected discrepancy of approximately 3% for any experimentalâcomputational velocity comparisons. The corner regions of the rectangular cross-section wind tunnel exhibit velocity differences of 7% between experimental data and computations with linear eddy-viscosity models, but these discrepancies are reduced to 4â5% when the quadratic constitutive relation is used. This improvement can be attributed to a better prediction of the corner boundary-layer structure, due to computations reproducing the stress-induced streamwise vortices which are known to exist in this flow field. However, the strength and position of these vortices do not correspond exactly with those in the measured flow. A further observation from this study is the appearance of additional, non-physical vortices when the value of the quadratic coefficient in the relation exceeds the recommended value of 0.3.This material is based upon work supported by the US Air Force Office of Scientific Research under award number FA9550â16â1â0430
Performativity, fabrication and trust: exploring computer-mediated moderation
Based on research conducted in an English secondary school, this paper explores computer mediated moderation as a performative tool. The Module Assessment Meeting (MAM) was the moderation approach under investigation. I mobilise ethnographic data generated by a key informant, and triangulated with that from other actors in the setting, in order to examine some of the meanings underpinning moderation within a performative environment. Drawing on the work of Ball (2003), Lyotard (1979) and Foucault (1977, 1979), I argue that in this particular case performativity has become entrenched in teachersâ day-to-day practices, and not only affects those practices but also teachersâ sense of self. I suggest that MAM represented performative and fabricated conditions and (re)defined what the key participant experienced as a vital constituent of her educational identities - trust. From examining the case in point, I hope to have illustrated for those interested in teachersâ work some of the implications of the interface between technology and performativity
Micro-Hall Magnetometry Studies of Thermally Assisted and Pure Quantum Tunneling in Single Molecule Magnet Mn12-Acetate
We have studied the crossover between thermally assisted and pure quantum
tunneling in single crystals of high spin (S=10) uniaxial single molecule
magnet Mn12-acetate using micro-Hall effect magnetometry. Magnetic hysteresis
experiments have been used toinvestigate the energy levels that determine the
magnetization reversal as a function of magnetic field and temperature. These
experiments demonstrate that the crossover occurs in a narrow (~0.1 K) or broad
(~1 K) temperature interval depending on the magnitude and direction of the
applied field. For low external fields applied parallel to the easy axis, the
energy levels that dominate the tunneling shift abruptly with temperature. In
the presence of a transverse field and/or large longitudinal field these energy
levels change with temperature more gradually. A comparison of our experimental
results with model calculations of this crossover suggest that there are
additional mechanisms that enhance the tunneling rate of low lying energy
levels and broaden the crossover for small transverse fields.Comment: 5 pages, 5 figure
An Aeroacoustic Investigation of a Tiltwing eVTOL Concept Aircraft
With the advancement in electric battery design, aircraft designers and manufacturers are no longer constrained to established configurations. Developments in Vertical Take-off and Landing (VTOL) aircraft have also been seen in recent times through the design of modern tiltrotor aircraft such as the AW609 and the V-280 Valor. The combination of these developments allowed engineers to propose designs which utilise the vertical take-off and landing capabilities of a tiltrotor aircraft with electrically driven propulsion systems, deemed eVTOL (Electrically driven Vertical Take-off and Landing). This investigation aims to develop an understanding of the aeroacoustic emissions associated with an eVTOL aircraft, due to acoustics being one of the key components in future certification. The study will consist of an investigation into the baseline design, followed by an optimisation study aiming to reduce the amount of noise generated
Interactions of shock tube exhaust flows with laminar and turbulent flames
The interactions of flow features emitting from open-ended shock tubes with free-standing propane flames have been investigated using high-speed schlieren imaging and high-frequency pressure measurements, with additional data from validated numerical modeling. Both compressed air-driven interactions with non-pre-mixed laminar diffusion flames (small-scale) and explosively-driven interactions with turbulent non-pre-mixed turbulent flames (large-scale) were tested for various flame locations and shock tube stagnation pressures (and therefore Mach numbers). In the small-scale tests it was observed that the flames were not significantly influenced by the passage of either the initial shock if placed close to the tube exit, or the weaker pressure waves downstream if the flame was placed further away. Four types of interaction were classified, three of which led to permanent extinguishment of the flames. The most effective mechanism of extinguishment for a flame in-line with the exhaust was the axial exhaust jet of expanding air, which served to push the flame off the fuel source either at close range (Type I) or more slowly at a distance (Type II), after which rapid cessation of combustion occurred. With the flame positioned to one side of the path of the jet, strong loop vortices achieved a similar overall outcome of extinguishment, albeit with very different flame behavior in reaction to the strong turbulence and vorticity induced by the passing flow (Type III). In all cases bar one, the disruption to the fire triangle caused by these flow effects was sufficient to extinguish â rapidly and permanently â the flame. However, at a sufficient lateral offset of the flame from the shock tube exit, the strength of rotating flow being entrained into the diffusing vortex ring was not sufficient to remove and disperse the heat from the extinguished flame (Type IV), such that re-ignition could occur. By contrast, in the large-scale tests with a significantly different shock pressure profile and a flame approximately 1 order of magnitude greater, extinguishment in all cases for all shock strengths and locations was achieved by the shock itself (accelerating combustion) and the following âblast windâ impulsively moving the flame off the fuel source, with the vortices having negligible effect at the given testing locations (Type V)
Diversity and complexity: becoming a teacher in England in 2015-16
This paper is based on a profile of Initial Teacher Training (ITT) provision in England, which was developed as
part of a wider research programme on Diversity in Teacher Education (DiTE) based at Bath Spa University
(Whiting et al, 2016). It provides a new topography of routes to qualified teacher status (QTS) in England for
the academic year 2015-16, along similar lines to an exercise undertaken for an earlier research programme, the
ESRC funded Modes of Teacher Education (MOTE) projects conducted in the 1990s (Barrett et al, 1992;
Whiting et al, 1996; Furlong et al, 2000). The allocations and census data published by the National College for
Teaching and Leadership (NCTL) provide the basis for this new topography, with additional material from a
range of sources, mostly online. Reflections on further changes in policy discourse since the year of analysis
hint at an acknowledgement of the role of Higher Education (HE) and a reduced emphasis on the much vaunted
focus on âschool-ledâ routes. However, there is little to reassure either ITT providers, or potential candidates, of
a long term plan aimed at halting the trajectory towards over-complexity and incoherence. The analysis raises
important questions about the quality of such diverse teacher education provision, the nature of partnership
between higher education institutions and schools, and the impact of reform on the identities of those training to
teach
Simulation of a Shear Coaxial GO2/GH2 Rocket Injector with DES and LES Using Flamelet Models
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97098/1/AIAA2012-3744.pd
Race and sex: teachers' views on who gets ahead in schools?
The research reported here was part of a large study of the impact of age, disability, race and sex on the teaching profession in England. The basic question asked in this research was how do these factors interact with career aspirations and achievements of classteachers, promoted teachers and headteachers? There were three different data sources: a large postal survey drawn from diverse geographic regions across England with over 2000 respondents; faceâtoâface individual interviews with over 100 teachers in 18 case study schools from across all of the main regions of England; discussions with special interest groups of teachers. Not surprisingly, the answer to the above question was complex. Nonetheless, the paper's conclusion highlights some of the noteworthy themes across this broad sample of teachers from primary, secondary and special schools
Numerical modeling and simulation of supersonic flows in propulsion systems by open-source solvers
Two open-source solvers, Eilmer and hyFoam, are here considered for their performance in simulating high-speed flows in different flow conditions and geometric configurations typical of propulsive systems at supersonic speeds. The goal is to identify the open-source platform providing the best compromise between accuracy, flexibility and computational cost to eventually simulate the flow fields inside ramjet and scramjet engines. The differences in terms of discretization and solution methods of the selected solvers are discussed in terms of their impact on solution accuracy and computational efficiency and in view of the aerothermodynamic analysis and design of future trans-atmospheric propulsive systems. In this work steady state problems are considered. Numerical results of two scramjet type engines demonstrated a similar predictive capability of both codes in non-reacting conditions. These results highlight their potential to be considered for further characterization of overall engine performance
- âŠ