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The quadratic constitutive relation is a simple extension to the linear eddy-viscosity hypothesis
and has shown some promise in improving the computation of flow along streamwise corner
geometries. In order to further investigate these improvements, the quadraticmodel is validated
by comparingRANS simulations of aMach 2.5wind tunnel flowwith high-quality experimental
velocity data. Careful set up and assessment of computations using detailed characterisation
data of the overall flow field suggests aminimum expected discrepancy of approximately 3% for
any experimental–computational velocity comparisons. The corner regions of the rectangular
cross-section wind tunnel exhibit velocity differences of 7% between experimental data and
computations with linear eddy-viscosity models, but these discrepancies are reduced to 4–5%
when the quadratic constitutive relation is used. This improvement can be attributed to a
better prediction of the corner boundary-layer structure, due to computations reproducing the
stress-induced streamwise vortices which are known to exist in this flow field. However, the
strength and position of these vortices do not correspond exactly with those in the measured
flow. A further observation from this study is the appearance of additional, non-physical
vortices when the value of the quadratic coefficient in the relation exceeds the recommended
value of 0.3.

I. Introduction

Streamwise corner flows are often encountered in high-speed flows. For example, the intakes of supersonic aircraft,
wing–body junctions, and turbine blade–hub junctions all contain streamwise corners, along which a boundary layer

develops. However this geometry, which is often unavoidable, is also problematic. Since the corner region corresponds
to the intersection of two viscous boundary layers, it contains very low momentum flow. An adverse pressure gradient,
such as due to the impingement of a shock wave, often causes the corner boundary layer to separate. The corresponding
stagnation pressure losses can have a significant detrimental effect. For instance, corner effects in the wing-body
junction are estimated to contribute 4–6% of the total aircraft drag, while the inlet corner flows are believed to reduce
the range of fighter aircraft by 9% [1].

Despite the significance of the corner regions in predicting the wider flow field, corner flows are generally not
computed accurately by the Reynolds-averaged Navier–Stokes (RANS) methods typically used in industry. This is
largely due to the inability of such computations to capture streamwise vortices in the corner boundary layer, which are
known to affect the local flow momentum [2]. These vortices are produced by anisotropies in the Reynolds stresses in
the flow, represented by terms A and B in the mean streamwise vorticity equation [3]:
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In this equation, lG , lH and lI are the vorticity components in the streamwise, wall-normal and spanwise directions,
while a is the kinematic viscosity of the flow.
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The difficulty faced by RANS computations in capturing the vortices is thought to be related to the reliance of
popular turbulence models on the linear eddy-viscosity hypothesis, which has remained popular due to its simplicity
and low computational cost, as compared to more involved closure models. Linear eddy-viscosity models (LEVMs)
estimate the Reynolds stress tensor, g8 9 = −dD′8D′9 , using the Boussinesq assumption:

g̃8 9 = 2`C(∗8 9 +
2
3
d:X8 9 , (2)

where g̃8 9 is the estimated Reynolds stress tensor and `C is the eddy viscosity. In this equation, the traceless stress tensor
(∗
8 9
= (8 9 − 1/3 mD:

mG:
X8 9 , with X8 9 denoting the Kronecker delta, and (8 9 = 1/2

(
mD8
mG 9
+ mD 9

mG8

)
. The density is given by d

and : corresponds to the turbulent kinetic energy. Note that the second term, 2/3d:X8 9 , is neglected in one-equation
turbulence models, which have instead:

g̃8 9 = 2`C(∗8 9 . (3)

Equations 2 and 3 both produce a simple distribution of turbulent stresses. In particular, E′E′ = F′F′ and E′F′ = 0,
and so the vorticity production terms (A and B in Eq. 1) both evaluate to zero. As a result, RANS simulations based
on linear eddy-viscosity models are unable to generate the streamwise vortices which exist in corner boundary layers,
resulting in a poor prediction of these flows.

One approach to extend the capabilities of LEVMs with only a mild increase in complexity is to consider terms that
are quadratic in the mean vorticity and strain tensors, when evaluating the Reynolds stress tensor. These extensions to
the Boussinesq assumption still relate the eddy viscosity with the turbulent stresses using only properties of the mean
flow, rather than any variables specific to the turbulence model in use. There have been two iterations of the quadratic
constitutive relation (QCR), developed by Spalart. The original statement of the relation, QCR-2000 [4], applies a
modification to the Boussinesq assumption, and is defined by:
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)
. Note that since this modification uses only mean-flow properties, it can

be applied to any single-equation or multi-equation turbulence model that is based on a linear eddy-viscosity model.
The additional term 2/3d:X8 9 can be included for turbulence models which provide the turbulent kinetic energy, : .

A more recent version of this relation, QCR-2013 [5], was proposed for one-equation turbulence models which do
not provide : and includes an additional term:
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This additional term 22A2`C
[√
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]
X8 9 approximately accounts for the 2/3d:X8 9 term in the Boussinesq equation

(Eq. 2), which had been omitted in Eqs. 3 and 4. The constants 22A1 and 22A2 were proposed as 0.3 and 2.5, respectively,
after calibration in the outer part of an equilibrium turbulent boundary layer [5].

A recent version of the model, termed QCR-2020, has been proposed by Rumsey et al. [6]. In this formulation, the
constants, 22A1 and 22A2, are no longer assumed to be spatially uniform but are replaced with equivalent coefficients
containing wall-normal dependency, which vary from one value at the walls to a different one near the boundary-layer
edge. Given the relative infancy of the QCR-2020 extension and its inherent added complexity, this paper instead focuses
on QCR-2013, which has constant coefficient values and whose implementation in RANS solvers is well-established
[7–10].

All formulations of QCR have appeared to demonstrate some success in corner flow prediction. Rumsey et al. found
that the estimate of corner separation is improved by QCR [10], and Dandois et al. demonstrated that these improvements
extend to shock-induced separation in transonic and supersonic flows [7]. These studies compare the size and shape
of the corner separation extracted from computations against experiment. However, the velocity distribution within
corner boundary layer itself has not been measured experimentally. It is therefore not possible to fully understand why
QCR has improved prediction of corner separation, or to evaluate the extent of the model’s capabilities. One plausible
explanation is that computations using QCR are able to generate streamwise vortices within the corner boundary layer
[5, 9], which had not been captured by LEVMs, but this hypothesis can not be confirmed using existing data sets. In
addition, the extent to which the properties of the vortices in these RANS simulations (position, strength, etc.) coincide
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Fig. 1 Wind tunnel setup for a) the full and b) the half nozzle configurations. The dashed circle corresponds
to a window in the tunnel sidewall, which provides optical access.

with those of the physical flow remains yet to be established. This paper therefore aims to address the resulting gap in
knowledge by evaluating the capabilities and limitations of QCR using supersonic corner flow data obtained from wind
tunnel experiments.

II. Wind tunnel experiments

A. Experimental methodology
Experiments are performed in Supersonic Wind Tunnel No. 1 at Cambridge University Engineering Department. This
is a blow-down wind tunnel, driven by a high-pressure reservoir. The nominal freestream Mach number is fixed at
M∞ = 2.5 for this study. The corner boundary layers of supersonic wind tunnels are known to be strongly influenced by
the nozzle geometry. Therefore, in order to investigate two distinct corner flow topologies, the tunnel is operated in both
a full and half nozzle configuration, as depicted in Fig. 1.

An empty wind tunnel configuration is used in this study, and the measurements focus on the turbulent, naturally-
grown boundary-layers on the tunnel surfaces. The rectangular working section of the tunnel has a width of 114 mm,
and a height of 172 mm and 86 mm for the full and half configurations respectively. The coordinate system convention
is shown in Fig. 1: G represents the streamwise direction, as measured from the end of the nozzle; H indicates the
floor-normal direction, with H = 0 mm set at the tunnel floor; I is the spanwise coordinate measured from the centre
span, such that I = ±57 mm correspond to the tunnel sidewalls.

The stagnation pressure is set to 308± 1 kPa and the operating stagnation temperature is measured as 285± 5 K; this
corresponds to a nominal unit Reynolds number of 31 × 106 m−1. Within the optically accessible region of the working
section (60–120 mm downstream of the nozzle exit), the tunnel boundary-layers are approximately 7 mm to 8 mm thick.
They therefore have a Reynolds number based on incompressible displacement thickness of around ReX∗

8
= 30, 000.

Several experimental techniques are used to probe the flow. A z-type schlieren system with a horizontal knife-edge
enables visualisation of spanwise-averaged density gradients associated with flow features in the working section.
Steady-state surface pressure measurements are performed using static pressure taps with 0.3 mm diameter. The taps are
located across the tunnel sidewall, allowing the pressure distributions over this surface to be measured to an accuracy of
±1%.
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Fig. 2 Division of regions for the purpose of validation (red) and of flow characterisation i.e. the set up of
computations (blue) for a) the full nozzle setup, and b) the half nozzle setup.

The streamwise flow velocity, D, is measured by laser Doppler velocimetry (LDV). The flow is seeded with paraffin
in the settling chamber. Previous measurements in this facility of particle lag through a normal shock have placed the
seeding droplet diameter in the range 200 − 500 nm [11]. The measured velocities have an error of 2%, due to the finite
number density of seeding particles and due to the laser optics. In practice, laser Doppler velocimetry is not precisely
a point-measurement technique, since velocities are averaged over a nominal ellipsoidal probe volume which spans
0.1 mm in the streamwise and vertical directions, and 2 mm in the spanwise direction. The positional accuracy of this
probe volume is, approximately, ΔG ≈ 0.2 mm, ΔH ≈ 0.005 mm, and ΔI ≈ 0.1 mm.

Boundary-layer traverses are carried out with a spatial resolution of around 0.1 mm. The measured velocity data
is then fitted to theoretical profiles. A Sun & Childs (1973) fit [12], adapted to include a van Driest compressibility
correction, is used for the outer layer; this combines a log-law of the wall region with a Coles wake function. The
viscous sublayer is modelled using a Musker (1979) fit [13]. These fitted profiles are then used to calculate characteristic
boundary-layer integral parameters. This avoids errors caused by poor measurement resolution near the wall and
therefore provides a more accurate estimate of integral boundary-layer parameters. The boundary-layer properties
are determined in their incompressible forms, as these are less sensitive to variations in Mach number and require
fewer assumptions to calculate from raw velocity data. The LDV data obtained in this study typically has around
40 measurement points within the boundary layer and the closest data point to the wall is at around H+ = 80. This
corresponds to an uncertainty in integral parameters of around 5% for an equilibrium turbulent boundary layer [14].

B. Characterisation of flow quality
In order to ensure that the computations are not tuned using experimental validation data, separate regions are designated
for flow characterisation and for validation purposes. Figure 2 shows that the validation region is restricted to the
15 mm × 15 mm region around each wind tunnel corner, whilst the remainder of the flow field is used to characterise the
quality of the flow and to set up computations.

Schlieren images are captured for both nozzle configurations used in the current study. Figures 3a and 3b show
that the flow in the tunnel is established. It is also possible to identify the boundary layers along the tunnel’s floor and
ceiling, as well as waves emanating from imperfections in these surfaces.

The strength of the waves identified in Fig. 3 is quantified using steady-state surface pressure measurements on
the tunnel sidewall. For the full nozzle setup, Fig. 4a shows that the wall static pressure varies by 4% throughout the
working section. These deviations correspond to departures in Mach number of 0.02 from a mean value of 2.48. The
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Fig. 3 Schlieren image for the empty tunnel with flow established for a) the full nozzle setup, and b) the half
nozzle setup.

oblique features in the plots correspond to weak waves generated from the tunnel floor and ceiling. The wave angle
is approximately 24 ± 2◦ which, for a Mach 2.5 flow, matches closely to the Mach angle (23.6◦). These waves can
therefore be treated as isentropic. Meanwhile, the vertical columns are likely due to spanwise-travelling waves generated
at the sidewalls. The angle of these waves can not be extracted from the data in Fig. 4a. However, the fact that the Mach
number varies by less than 1% in the test section does imply that these waves are also weak.

The equivalent data for the half nozzle configuration is presented in Fig. 4b. Here, the static pressure variation across
the test section is approximately 7%. The wall pressures correspond to a mean Mach number of 2.44, and associated
deviations from this value of 0.03. As for the full nozzle, the pressure distribution exhibits both oblique and vertical
features. These correspond to waves generated by imperfections in the tunnel floor and ceiling (oblique), and in the
sidewalls (vertical). A comparison of the static pressures and the schlieren images indicates that these waves are stronger
than for the full setup, though they are still weak in nature.

Velocity data is obtained for the boundary layer away from the symmetry plane, and on the sidewalls. The measured
velocity distribution is shown in Fig. 5, for the two nozzle configurations. The core flow represents a large fraction of
the channel area for both setups. The floor and ceiling boundary-layers have approximately constant thickness across the
tunnel span, but there is a significant variation in sidewall boundary-layer thickness. This variation can be attributed to
known secondary flows which are induced by vertical pressure gradients within the nozzle region. These secondary
flows take the form of vertical velocities within the sidewall boundary layers, directed from the corners towards the
tunnel centre height in the full nozzle setup and from the top to the bottom corners for the half nozzle [15].

C. Corner flow validation data
The two nozzle geometries studied in this paper are known to produce quite distinct corner flows [15]. The streamwise
velocity component in the 15 mm × 15 mm regions around each corner of the channel is measured at G = 120 mm.
This velocity distribution is shown for the full nozzle setup in Fig. 6a and for the half nozzle setup in Fig. 6b. There
appear to be two distinct flow topologies. All four corners of the full nozzle setup and the top corners of the half
nozzle configuration are similar in nature. Meanwhile, the bottom corners with the half nozzle have a thicker sidewall
boundary-layer and, therefore, lower-momentum flow in this region.

The secondary flows which influence the sidewall boundary-layer thickness distribution in Fig. 5 are thought to
strongly influence the corner regions. These vertical velocity components within the sidewall boundary layers are
indicated in Fig. 6 by solid arrows.

Firstly, the secondary flows affect the thickness of the corner boundary layers. Note that the floor/ceiling boundary-
layer thickness is approximately the same for all flows shown in Fig. 6, which suggests that the differences in the corner
boundary layer depend primarily on the thickness of the constituent sidewall boundary layer. This property is, in
turn, directly determined by the sidewall secondary flows. All corners in the full nozzle setup and the bottom corners
of the half nozzle setup have the sidewall secondary flow directed vertically away from the corner. This bulk flow

5



0

43

86

129

172

−100 −50 0 50 100 150 200 250
G (mm)

H

(mm)

? / ?0

0.054

0.070

0.066

0.062

0.058

0

43

86

−100 −50 0 50 100 150 200 250
G (mm)

H

(mm)

? / ?0

0.054

0.070

0.066

0.062

0.058

a) full nozzle

b) half nozzle

Fig. 4 Static pressure distribution measured using taps located in the tunnel sidewall for a) the full nozzle
setup, and b) the half nozzle setup. The red lines correspond to high-pressure areas, which take the form of
oblique (solid) and vertical (dashed) regions.

6



550

500

350

450

400

I (mm)
0 +57−57

0

43

86

129

172

I (mm)
0 +57−57

H

(mm) 0

43

86

H

(mm)

a) full nozzle b) half nozzle

D (ms−1)

Fig. 5 Streamwise flow velocities measured across the tunnel cross-section at G = 120 mm. Corner regions,
marked by red boxes, are excluded for characterisation purposes. Regions with an insufficient number density
of seeding particles for high-quality velocity measurements are in white.

550

500

350

450

400

D (ms−1)
b) half nozzlea) full nozzle

H

(mm)

0

15
157

172

I (mm)
+57−57 −42 +42

H

(mm)

0

15

I (mm)
+57−57 −42 +42

71

86

Fig. 6 The streamwise velocity (u) in 15 mm × 15 mm regions around all four tunnel corners for a) the full
nozzle setup, and b) the half nozzle setup. These are measured at x = 120 mm. Solid arrows indicate the
direction of sidewall secondary flows, and dashed arrows indicate local regions of momentum transfer.

7



transports the low-momentum fluid in the sidewall and corner boundary layers away from the region. As a result, in the
vicinity of these corners, the sidewall boundary layers are thin. The bottom corners of the channel in the half nozzle
setup are different, however. Here, the sidewall secondary flows are in the downwards direction, and so they advect
low-momentum fluid into the corner region. This results in an increase in the thickness of the boundary layer, consistent
with the experimental data from Fig. 6b.

Secondly, a closer examination of Fig. 6 reveals that the boundary-layer thickness is not the only defining feature of
this flow. In particular, there are some regions where the high momentum core flow persists into the boundary layer and
others where low momentum fluid extends locally into the core. Such regions are indicated by dashed arrows which
show the approximate location and direction of these momentum transfers. It is thought that these are caused by the
streamwise vortices embedded in the viscous corner flow regions.∗ The momentum transfers in the bottom corners of
the half nozzle setup would be consistent with the presence of two counter-rotating vortices, while the other measured
corners appear to contain only a single primary vortex residing on the floor or ceiling. These different inferred vortex
structures are consistent with the advection of any vortex embedded in the sidewall boundary layer by the nozzle-induced
secondary flows [15].

The sidewall secondary flows therefore cause two very different corner flows in the bottom corner regions of the
full and half nozzle setups. These are both used as independent validation data sets for direct comparison with RANS
simulations.

III. RANS computations

A. Numerical methodology
The experimental data is used to validate RANS simulations of the wind tunnel flow. For this type of validation study, it
is essential that the computations faithfully represent the flow in the physical wind tunnel. This is achieved by setting up
the simulations using comprehensive flow characterisation data, as detailed in Ref. [16].

The nozzle geometry-dependence of the corner flows requires the computations to have knowledge of the nozzle
region, and so the entire tunnel flow is computed from the settling chamber to well downstream of the working section.
Only one quarter of the tunnel with the full nozzle is modelled since it is, in theory, top–bottom and left–right symmetric.
Similarly, only one half of the tunnel with the half nozzle configuration is simulated.

The Chimera overset grid technique [17] is used to create a smooth mesh in the contraction and at the sharp corner
upstream of the nozzle. The final grid system, shown in Fig. 7, is created using the mesh generation software Pointwise
[18], contains 181.7M points across seven grids. A viscous wall spacing of 1.5 × 10−7 m is used with a growth rate of
5%; this produces H+ < 1 at the first point from the wall. The solver OVERFLOW 2.2l [19] is used to solve the RANS
equations using the third-order accurate upwind finite difference HLLC scheme [20] combined with the Koren limiter
[21]. The time integration uses an unfactored SSOR implicit solution algorithm [22].

The validation process compares corner flow measurements against simulations using the Spalart–Allmaras [23, 24],
Menter SST [25, 26], and Wilcox :–l [27, 28] turbulence models. It is important to ensure that any observed differences
in the corner regions are not due to any turbulence-model sensitivity of the global flow computation. Therefore,
centre-span floor boundary-layer profiles for these turbulence models are compared for the full nozzle setup in Fig. 8a.
The minimal differences between the profiles shows that computations of this flow away from the corners appear to be
insensitive to the turbulence model used.

To conduct a grid resolution study on the full nozzle setup while maintaining the point distribution of the original
grid, every other point is removed to create a medium grid (22.9M points), and every other point is removed from the
medium grid to produce a coarse grid (2.9M points). Figure 8b shows the centre-span boundary-layers on the test
section floor for the three grid levels. The three velocity profiles are coincident, indicating that the centre-span profiles
have reached grid convergence.

B. Assessment of computational accuracy
The accuracy of computations is evaluated using a range of characterisation data, in order to test how well the
physical wind tunnel flow is captured. In particular, this is assessed by comparing computational data with the

∗Unfortunately, the inherent limitations of a two-component LDV setup prevent direct identification of the the vortices themselves. Instead, it is
necessary to infer the vortex topology by considering the regions of momentum transfer between the core flow and the boundary layers. This indirect
method requires correct interpretation of the shape of the complex corner boundary layer, and so the inferred vortex topology may be prone to errors.
As a result, the following discussion should be treated with some degree of caution.
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experimentally-obtained pressure profile through the test section, the velocities across the channel cross-section, and the
profile of the boundary layers growing along the walls. Note that, as illustrated in Fig. 2, this stage of the process excludes
the corner regions of the flow field, which are restricted for validation purposes. The assessment of computational
accuracy is described in detail in Ref. [16], and the key results are summarised below.

For the full nozzle setup, the difference between the computational (Fig. 9a-i) and experimental (Fig. 4a) sidewall
pressure distributions is plotted in Fig. 9a-ii. The difference in the static pressure ratio ?/?0 is around 3 × 10−3, which
corresponds to a Mach number discrepancy of about 1.5%.

The equivalent computational data for the half nozzle setup is given in Fig. 9b-i. The difference compared to the
measurements from Fig. 4b are plotted in Fig. 9b-ii. The discrepancy in static pressure ratio is roughly 6 × 10−3, larger
than the equivalent full nozzle comparison. Note, however, that this still corresponds to a relatively small difference in
the corresponding Mach number of approximately 2.4%.

In both nozzle setups, the computations appear to under-predict the pressure, with the flow expanding to a lower
pressure and a higher Mach number than the experiment. The top-left corner shows a higher pressure region that is
just completing its expansion through the nozzle. The simulations appear to capture the weak waves generated by the
tunnel floor and ceiling, which indicates that these correspond to uncancelled waves from the nozzle. However, the
computations do not seem to reproduce the vertical features, which are believed to be waves from the tunnel sidewalls.

The accuracy of computations is also evaluated by comparing the boundary layer profiles to experiment. This is
performed at various streamwise stations for the floor boundary layer on the centre span, assumed to be representative of
the boundary layers growing along the wind tunnel walls.

A comparison between computational and experimental floor boundary-layer profiles is presented for the full nozzle
in Fig. 10a and for the half nozzle in Fig. 10b. In both cases the freestream velocity and the general profile shape appear
to be in good agreement. The profiles do, however, differ slightly at the edge of the boundary layer for both nozzle
setups.

A more quantitative assessment of the agreement between computations and experiment is performed by calculating
the relevant boundary layer parameters for the profiles in Fig. 10. These are listed in Table 1. There is a good agreement
of the integral parameters (X∗

8
, \8 , and �8). The deviations from experimental values are generally on the order of 4%.

With an experimental uncertainty in these quantities of 5%, the computations do appear to predict these boundary-layer
parameters with good accuracy.

Note however, that the deviations from experimental values of the boundary-layer thickness, X, are on the order
of 15%. This parameter therefore does not appear to be predicted particularly well by the computations. Whilst the
boundary-layer thickness is known to be less robust than the corresponding integral parameters, the differences are
believed to be largely due to the discrepancies in velocity near the boundary-layer edge. These discrepancies, whilst
slightly larger than the estimated experimental uncertainties, are relatively minor – the maximum velocity difference is
3%.

A final metric which can be used to evaluate how well the computations capture the physical flow is the streamwise
velocity across the tunnel cross-section. The measurements from Fig. 5 are compared to equivalent computational data,
which are presented in Figs. 11a-i and 11b-i. These figures appear, on first glance, to be consistent with the experimental
data – there is a large core region, the floor/ceiling boundary layers are spanwise-uniform with similar thicknesses, and
there are significant variations in the thickness of the sidewall boundary layer. The sidewall boundary layer is thickest at
the centre height for the full nozzle setup and at the bottom corners of the half nozzle setup.

A more quantitative measure of agreement can be obtained by calculating the difference between the computed and
the experimental velocity distributions. This difference is shown in Figs. 11a-ii and 11b-ii for the two nozzle setups. In
these figures, the velocities at most locations differ by no more than 10 ms−1, or 1.7% of the freestream velocity. The
notable exception is the sidewall boundary layers, where the discrepancy with experiment can be twice this large. Even
though the calculation of the sidewall boundary layers is not fully accurate, 95% of data points have no more than 3.2%
error for the full nozzle setup (11a-iii) and 3.5% error for the half nozzle setup (11b-iii).

This level of discrepancy is consistent with the differences between computed and experimental floor boundary-layer
profiles, shown in Fig. 10. This is slightly larger than the estimated experimental error, indicating that the computations
do not quite compute the true wind tunnel flow. However, a 3.5% error is considered to be small enough to show that the
simulations do capture the flow sufficiently well to be used for validation purposes. Moreover, the differences between
the two velocity distributions in this relatively well-understood part of the flow field can be used as a baseline ‘expected
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the computed pressure distribution, and ii. the difference between the computed pressure distribution and
equivalent experimental data (Fig. 4). The red lines correspond to high-pressure areas; these take the form of
oblique (solid) and vertical (dashed) regions.
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Fig. 10 Comparison between computational and experimental floor boundary-layer profiles, with a) the full
nozzle setup, and b) the half nozzle setup. The profiles are shown for the centre span at: i. x = 60 mm, ii.
x = 70 mm, iii. x = 80 mm, and iv. x = 90 mm.

Table 1 Incompressible floor boundary-layer parameters, on the tunnel centre span, extracted from the RANS
computations. These correspond to CFD profiles presented in Fig. 10a (full nozzle) and Fig. 10b (half nozzle).

experiment computation
G (mm) X (mm) X∗

8
(mm) \8 (mm) �8 X (mm) X∗

8
(mm) \8 (mm) �8

full nozzle
60 7.49 0.97 0.73 1.34 8.43 0.96 0.74 1.30
70 7.59 1.03 0.76 1.35 8.49 0.96 0.74 1.29
80 7.70 1.05 0.78 1.36 8.63 0.97 0.75 1.29
90 7.71 1.05 0.78 1.35 8.77 0.99 0.77 1.29

half nozzle
60 6.80 0.92 0.68 1.36 7.89 0.96 0.73 1.32
70 7.03 0.98 0.72 1.37 8.02 0.96 0.73 1.31
80 7.14 0.99 0.73 1.36 8.38 0.97 0.74 1.30
90 7.26 0.99 0.73 1.36 8.69 0.97 0.75 1.30
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minimum error’ during validation of the corner regions.
Therefore, whilst the precise wind tunnel flow might not be computed exactly, the simulations do appear to capture

much of the key physics and can be used for validation purposes.

IV. Validation

The validation stage of the study is focused on the corner regions of the tunnel, marked in Fig. 2, which had been excluded
in the previous section. The structure of the corner boundary layer is influenced by both the vorticity-generating Reynolds
stress anisotropies and the secondary flows within the sidewall boundary layers. The secondary flows appear to be
captured by the simulations (Fig. 11), which contain knowledge of the nozzle geometry. Therefore, these computations
can be compared with the experimental data from Fig. 6 to validate the capabilities of different numerical models in
corner flow prediction.

A. Linear eddy-viscosity turbulence models
The two distinct corner flow structures used for validation tests, are the bottom corners of the full nozzle and the half
nozzle setups. In each case, the streamwise velocity in the 15 mm × 15 mm around the corner is extracted from the
computations of the wind tunnel flow. This data is shown for the Spalart–Allmaras turbulence model in Fig. 12a-i for
the full nozzle setup and in Fig. 12b-i for the half nozzle arrangement.

A comparison with the equivalent experimental data (Fig. 6) shows that the constituent floor and sidewall boundary-
layer thicknesses are correctly determined by these computations. However, for both nozzle setups, the computations
show a smooth transition between the sidewall and the floor boundary layers. This contrasts with the more complex
shape of the corner boundary layer from experiment, which is believed to be perturbed by embedded vortices. Indeed,
Figs. 12a-ii and 12b-ii show that the departures from the experimental velocities are as large as 40 ms−1, or 7% of the
freestream velocity. The spatial distribution of the velocity difference in these figures also displays clear structures,
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Table 2 Percentage error in corner flow computations using different turbulence models for both nozzle setups
when compared with experimental data from Fig. 6. These correspond to velocity distributions shown in Fig. 12
(Spalart–Allmaras) and in Fig. 13 (k–8 and SST).

turbulence model
percentage error

full nozzle half nozzle
Spalart–Allmaras 6.74% 6.82%

:–l 6.26% 7.52%
SST 6.02% 6.76%

which can perhaps be associated with vortices that exist in the physical flow but are missing from the computations.
From the corresponding histograms in Figs. 12a-iii and 12b-iii, a typical error can be calculated, defined such that 95%
of data points do not exceed this deviation from the velocity measurements. This error is determined to be 6.7% with
the full nozzle (Fig. 12a-iii) and 6.8% with the half nozzle (Fig. 12b-iii), much larger than the discrepancies (≈ 3%)
estimated for the well-predicted regions of the flow field.

The streamwise velocity distribution of the :–l and the SST turbulence models, which are also based on a
linear eddy-viscosity hypothesis, are shown in Fig. 13. These computed flow fields are are almost identical to the
Spalart–Allmaras model for both nozzle setups, exhibiting a smooth transition from the sidewall to the floor boundary
layers. The discrepancy from experimental data, listed in Table 2, is in the range 6–8%, roughly the same for all three
linear eddy-viscosity models investigated. This finding provides evidence that the poor prediction of corner flows is not
specific to the Spalart–Allmaras model but is likely a feature of linear eddy-viscosity turbulence models in general.

In order to further investigate whether the error can be attributed to a lack of vortices in this region, the rigid-body
component of streamwise vorticity, lRR, is extracted from the computations. This quantity, defined by Kolář, is
calculated by removing the effects of mean shear and of irrotational strain from the vorticity field [29]. Figure 14 shows
this vorticity distribution extracted from the simulations using the three turbulence models under consideration. In all
three cases, the corner region contains no vorticity greater than 500 s−1 ≈ 0.006 D∞/X, where D∞ is the freestream
velocity and X is the nominal local boundary-layer thickness. It therefore appears that computations based on linear
eddy-viscosity models are unable to generate the stress-induced corner vortices which exist in the physical flow.

B. The quadratic constitutive relation
Equivalent computations were also performed using the Spalart–Allmaras model with the QCR-2013 form of the
quadratic constitutive relation [5]. The streamwise velocity distribution in the corner region, shown in Figs. 15a-i and
15b-i, suggests that the sidewall and floor boundary-layer thicknesses are still well-predicted. More importantly, the
shape of the corner boundary layer now seems to better correspond to the measurements. Indeed, Figs. 15a-ii and 15b-ii
suggest that the deviation from experimental values is reduced considerably, with velocity differences generally not
exceeding 25 ms−1. This discrepancy corresponds to 4.1% for the full nozzle setup (Fig. 15a-iii) and 5.6% for the half
nozzle setup (Fig. 15b-iii).

The improvements in flow field prediction are thought to be due to the corner vortices being simulated more
accurately when the quadratic constitutive relation is used. This is confirmed by the rigid-body component of vorticity
within the corner region, shown in Fig. 16. In contrast to Fig. 14, there are now obvious vortices within the corner
boundary layer. Note that in Fig. 16a, the full nozzle setup shows a floor vortex close to the corner, and a sidewall
vortex displaced upwards away from the corner. This is consistent with the measured vorticity distribution from Fig. 6a.
Similarly, the configuration of vortices with the half nozzle (Fig. 16b) agrees well with the asymmetric vortex pair
structure suggested in Fig. 6b.

C. Effect of changing the QCR constant
The computations with QCR in the preceding section use the recommended value of the constant, 22A1 = 0.3, which
was calibrated in the outer part of an equilibrium turbulent boundary layer [5]. However, in practice, this ‘constant’ is
generally used as a tuning parameter. Computations with different values of 22A1 were therefore investigated.

The streamwise velocity distribution in the bottom corner region is presented in Fig. 12 for 22A1 = 0 and in Fig. 15
for 22A1 = 0.3. Equivalent velocity distributions with 22A1 = 0.1, 0.2, 0.4, and 0.5 are given for the full nozzle and the
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Table 3 Spatial correlation coefficient, �̃, calculated for the velocity data presented in Figs. 12, 15 and 17.

22A1
�̃

full nozzle half nozzle
0 (no QCR) 0.936 0.969
0.1 0.948 0.975
0.2 0.962 0.978
0.3 (default value) 0.975 0.977
0.4 0.981 0.970
0.5 0.979 0.962

half nozzle setups in Figs. 17a and 17b, respectively. The corner boundary layer shape shows increasing distortion as
the value of 22A1 is increased.

In order to assess how well these computations match the experimental data (Fig. 6), a typical error is calculated
for each case, defined such that 95% of data points do not exceed this deviation from the experimentally-determined
velocities. Figure 18 plots this error as a function of 22A1 for both nozzle setups. In both cases, as 22A1 increases, the
error initially gets smaller before reaching a minimum and increasing again. The minimum error occurs at 22A1 = 0.4
for the full nozzle and at 22A1 = 0.2 for the half nozzle. In both these cases, the recommended 22A1 value of 0.3 does not
produce the best fit to experimental data but, when the error is averaged over the two nozzle setups, the minimum does
indeed lie at 22A1 = 0.3. This finding therefore supports the use of the recommended value of the QCR constant in
computing such supersonic corner flows.

It is important to note, however, that this finding relates specifically to the corner boundary layers of supersonic
channel flows measured in the current study, and so the behaviour of coefficients is valid only for this flow field.
Therefore, the results of this analysis should not be used directly to choose QCR coefficients in computations of any
other types of flow. In addition, the error metric used for the current analysis (defined such that 95% of data points lie
within this deviation from the measured velocity) is only one possible measure of the agreement between experimental
and computational data. This method of estimating error is particularly useful because it can be directly compared to
the ‘minimum expected error’ determined in Section III.B. However, another insightful metric is the spatial correlation
coefficient:

�̃ =

〈
Dexp Dcomp

〉
−

〈
Dexp

〉 〈
Dcomp

〉[(〈
D2
exp

〉
−

〈
Dexp

〉2
) (〈

D2
comp

〉
−

〈
Dcomp

〉2
)]1/2 , (6)

where Dexp and Dcomp represent the experimental and computational streamwise velocity data, respectively, and the
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wider flow field (Fig. 11).

angled brackets denote a spatial average over the validation region. The correlation coefficient takes values from −1
to 1 by construction, with �̃ = 0 corresponding to no correlation and �̃ = 1 indicative of perfect agreement between
computation and experiment. The calculated values of �̃ for each computational case are listed in Table 3. These
coefficients highlight the subtle nature of the effect of QCR but show the same broad trends as the error metric from
Fig. 18, with maximum correlation observed at 22A1 = 0.4 for the full nozzle and at 22A1 = 0.2 for the half nozzle.

Whatever the choice of error metric, it is useful to investigate the topology of streamwise corner vortices in order to
better understand the shape of the error curves in Fig. 18 . For each case from Fig. 17, the distribution of the rigid-body
component of streamwise vorticity is plotted in Fig. 19. Here, the strength of the counter-rotating vortex pair is seen to
initially strengthen as 22A1 is increased. As the strength of these vortices approaches those in the physical flow, the
corner boundary-layer shape is better predicted and the difference between computation and experiment is reduced, as
seen in Fig. 18.

However, when 22A1 reaches approximately 0.5 for the full nozzle and 0.3 for the half nozzle, the appearance
of additional vortices can be observed. Such vortices, thought to be non-physical, have been reported in similar
computations at high values of 22A1 by Leger et al. [8]. These spurious vortices modify the shape of the corner boundary
layer in a manner which does not reflect the true flow. As a result, the calculated error in Fig. 18 for both setups is seen
to increase for 22A1 large enough that the additional vortices are produced.

V. Conclusions

Despite the importance of the boundary layers along streamwise corner geometries in supersonic flow, these regions are
generally not predicted reliably by RANS methods typically used in industry. This paper uses experimental velocity
data obtained in the corner regions of a Mach 2.5 wind tunnel flow to validate a range of numerical approaches. The
RANS computations used for this process are carefully set up using a range of detailed characterisation data to ensure
that they are representative of the physical wind tunnel flow. An evaluation of the overall, relatively well-predicted flow
field suggests a minimum expected error of approximately 3% for the validation process.

Three popular turbulence models — Spalart–Allmaras, Menter SST, and Wilcox :–l— are found not to accurately
represent the measured corner flow. The complex boundary-layer edge structure is not reproduced by these computations,
resulting in velocity differences up to 7%. These errors can be attributed to the reliance of these turbulence models
on the linear eddy-viscosity assumption, resulting in an inability to generate the stress-induced corner vortices which
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modify the local flow.
When the quadratic constitutive relation is introduced, the vortices and, in turn, flow structure in the corner regions

are better predicted. The discrepancy from experimental velocity data is reduced to about 4–5%, much closer to
the minimum expected 3% error. However, the measured boundary-layer structure is not exactly captured by these
simulations which implies that, whilst vortices are generated, their strength and position appear to differ somewhat
from the physical corner vortices. Moreover, when the value of the coefficient 22A1, often treated as a tuning parameter,
exceeds the recommended value of 0.3, additional non-physical vortices are generated which cause increased deviation
from experimental data.

Therefore, through generating corner vortices, QCR has been shown to increase the accuracy of corner flow
computations, providing evidence to support its use where such flows are likely to be important. These findings explain
why the prediction of corner separation is improved when QCR is used. The results from such computations should,
however, be treated with some degree of caution since the position and strength of the generated vortices do not exactly
match those in physical flows. Furthermore, the value of 22A1 should not exceed 0.3 without ensuring that spurious
vortices have not been produced through careful analysis of the computed flow field.
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