12 research outputs found

    Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice

    Get PDF
    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the ?5, ?3 and ?4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.The laboratory of Mara Dierssen is supported by Departament d'Universitats, Recerca i Societat de la Informació (Grups consolidats 09 2009SGR1313). This work was supported by Grants SAF2010-16427, SAF2007-31093-E, and FIS (PI 082038); Marató TV3; the Jerome Lejeune, Koplowitz, FRAXA and Areces Foundations; and the European Union (CureFXS ERare-EU/FIS PS09102673, EU- Era NET Neuron. FOOD for THOUGHT F4T). The laboratory of Mairena Martín is supported by Ministerio de Economía y Competitividad (BFU2011-23034). The Centro de Investigación Biomédica en Red de Enfermedades Raras is an initiative of the Instituto de Salud Carlos III. The laboratory of María V. Sánchez is supported by Ministerio de Economía y Competitividad (BFU2011-27094

    Effect of Radiofrequency Catheter Ablation on Doppler Echocardiographic Parameters in Patients With Wolff-Parkinson-White Syndrome

    No full text

    Stem Cell and Advanced Nano Bioceramic Interactions

    No full text
    Bioceramics are type of biomaterials generally used for orthopaedic applications due to their similar structure with bone. Especially regarding to their osteoinductivity and osteoconductivity, they are used as biodegradable scaffolds for bone regeneration along with mesenchymal stem cells. Since chemical properties of bioceramics are important for regeneration of tissue, physical properties are also important for cell proliferation. In this respect, several different manufacturing methods are used for manufacturing nano scale bioceramics. These nano scale bioceramics are used for regeneration of bone and cartilage both alone or with other types of biomaterials. They can also act as carrier for the delivery of drugs in musculoskeletal infections without causing any systemic toxicity

    Towards a professional supervision culture: The development of social work supervision in Aotearoa New Zealand

    No full text
    corecore