1,021 research outputs found

    An Artificial Immune System for Misbehavior Detection in Mobile Ad-Hoc Networks with Virtual Thymus, Clustering, Danger Signal and Memory Detectors

    Get PDF
    In mobile ad-hoc networks, nodes act both as terminals and information relays, and participate in a common routing protocol, such as Dynamic Source Routing (DSR). The network is vulnerable to routing misbehavior, due to faulty or malicious nodes. Misbehavior detection systems aim at removing this vulnerability. For this purpose, we use an Artificial Immune System (AIS), a system inspired by the human immune system (HIS). Our goal is to build a system that, like its natural counterpart, automatically learns and detects new misbehavior. In this paper we build on our previous work and investigate the use of four concepts: (1

    Artificial immune systems

    Get PDF
    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self or nonself substances. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years

    Nosocomial nontyphoidal salmonellosis after antineoplastic chemotherapy: reactivation of asymptomatic colonization?

    Get PDF
    An increased frequency of nontyphoidal salmonellosis is well established in cancer patients, but it is unclear whether this represents increased susceptibility to exogenous infection or opportunistic, endogenous reactivation of asymptomatic carriage. In a retrospective study, a simple case definition was used to identify the probable presence of reactivation salmonellosis in five cancer patients between 1996 and 2002. Reactivation salmonellosis was defined as the development of nosocomial diarrhea >72h after admission and following the administration of antineoplastic chemotherapy in an HIV-seronegative cancer patient who was asymptomatic on admission, in the absence of epidemiological evidence of a nosocomial outbreak. Primary salmonellosis associated with unrecognized nosocomial transmission or community acquisition and an unusually prolonged incubation period could not entirely be ruled out. During the same time period, another opportunistic infection, Pneumocystis pneumonia, was diagnosed in six cancer patients. Presumably, asymptomatic intestinal Salmonella colonization was converted to invasive infection by chemotherapy-associated intestinal mucosal damage and altered innate immune mechanisms. According to published guidelines, stool specimens from patients hospitalized for longer than 72h should be rejected unless the patient is neutropenic or ≧65 years old with significant comorbidity. However, in this study neutropenia was present in only one patient, and four patients were <65 years old. Guidelines should thus be revised in order not to reject stool culture specimens from such patients. In cancer patients, nosocomial salmonellosis can occur as a chemotherapy-triggered opportunistic reactivation infection that may be similar in frequency to Pneumocystis pneumoni

    Are Major Histocompatibility Complex Molecules Involved in the Survival of Naive CD4+ T Cells?

    Get PDF
    The exact role of major histocompatibility complex (MHC) molecules in the peripheral survival of naive T cells is controversial, as some studies have suggested that they are critically required whereas others have suggested that they are not. Here we controlled for some of the features that differed among the earlier studies, and analyzed both the survival and expansion of naive CD4+ T cells transferred into MHC syngeneic, allogeneic, or MHC negative environments. We found that naive T cells transferred into MHC negative or allogeneic environments often fail to survive because of rejection and/or competition by natural killer (NK) cells, rather than failure to recognize a particular MHC allele. In the absence of NK cells, naive CD4+ T cells survived equally well regardless of the MHC type of the host. There was, however, an MHC requirement for extensive space-induced “homeostatic” expansion. Although the first few divisions occurred in the absence of MHC molecules, the cells did not continue to divide or transit to a CD44hi phenotype. Surprisingly, this MHC requirement could be satisfied by alleles other than the restricting haplotype. Therefore, space-induced expansion and survival are two different phenomena displaying different MHC requirements. Memory CD4+ T cells, whose survival and expansion showed no requirements for MHC molecules at all, dampened the space-induced expansion of naive cells, showing that the two populations are not independent in their requirements for peripheral niches

    On the exchange of intersection and supremum of sigma-fields in filtering theory

    Full text link
    We construct a stationary Markov process with trivial tail sigma-field and a nondegenerate observation process such that the corresponding nonlinear filtering process is not uniquely ergodic. This settles in the negative a conjecture of the author in the ergodic theory of nonlinear filters arising from an erroneous proof in the classic paper of H. Kunita (1971), wherein an exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page

    Separating Lentiviral Vector Injection and Induction of Gene Expression in Time, Does Not Prevent an Immune Response to rtTA in Rats

    Get PDF
    BACKGROUND: Lentiviral gene transfer can provide long-term expression of therapeutic genes such as erythropoietin. Because overexpression of erythropoietin can be toxic, regulated expression is needed. Doxycycline inducible vectors can regulate expression of therapeutic transgenes efficiently. However, because they express an immunogenic transactivator (rtTA), their utility for gene therapy is limited. In addition to immunogenic proteins that are expressed from inducible vectors, injection of the vector itself is likely to elicit an immune response because viral capsid proteins will induce "danger signals" that trigger an innate response and recruit inflammatory cells. METHODOLOGY AND PRINCIPAL FINDINGS: We have developed an autoregulatory lentiviral vector in which basal expression of rtTA is very low. This enabled us to temporally separate the injection of virus and the expression of the therapeutic gene and rtTA. Wistar rats were injected with an autoregulatory rat erythropoietin expression vector. Two or six weeks after injection, erythropoietin expression was induced by doxycycline. This resulted in an increase of the hematocrit, irrespective of the timing of the induction. However, most rats only responded once to doxycycline administration. Antibodies against rtTA were detected in the early and late induction groups. CONCLUSIONS: Our results suggest that, even when viral vector capsid proteins have disappeared, expression of foreign proteins in muscle will lead to an immune respons
    corecore