707 research outputs found

    Detecting polyploidy and its role in diversification across Hydnum (Cantharellales)

    Get PDF
    Abstracts from the April 12-14, 2019 MASC Conferenc

    The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses

    Get PDF
    Background Ectomycorrhizae (ECM) are symbioses formed by polyphyletic assemblages of fungi (mostly Agaricomycetes) and plants (mostly Pinaceae and angiosperms in the rosid clade). Efforts to reconstruct the evolution of the ECM habit in Agaricomycetes have yielded vastly different results, ranging from scenarios with many relatively recent origins of the symbiosis and no reversals to the free-living condition; a single ancient origin of ECM and many subsequent transitions to the free-living condition; or multiple gains and losses of the association. To test the plausibility of these scenarios, we performed Bayesian relaxed molecular clock analyses including fungi, plants, and other eukaryotes, based on the principle that a symbiosis cannot evolve prior to the origin of both partners. As we were primarily interested in the relative ages of the plants and fungi, we did not attempt to calibrate the molecular clock using the very limited fossil record of Agaricomycetes. Results Topologically constrained and unconstrained analyses suggest that the root node of the Agaricomycetes is much older than either the rosids or Pinaceae. The Agaricomycetidae, a large clade containing the Agaricales and Boletales (collectively representing 70% of Agaricomycetes), is also significantly older than the rosids. The relative age of Agaricomycetidae and Pinaceae, however, is sensitive to tree topology, and the inclusion or exclusion of the gnetophyte Welwitschia mirabilis. Conclusion The ancestor of the Agaricomycetes could not have been an ECM species because it existed long before any of its potential hosts. Within more derived clades of Agaricomycetes, there have been at least eight independent origins of ECM associations involving angiosperms, and at least six to eight origins of associations with gymnosperms. The first ECM symbioses may have involved Pinaceae, which are older than rosids, but several major clades of Agaricomycetes, such as the Boletales and Russulales, are young enough to have been plesiomorphically associated with either rosids or Pinaceae, suggesting that some contemporary ECM partnerships could be of very ancient origin

    1,303 generic names of agarics and Agaricales: Where are they now?

    Get PDF
    Abstracts from the April 12-14, 2019 MASC Conferenc

    Six new species and reports of Hydnum (Cantharellales) from eastern North America

    Get PDF
    Five species of Hydnum have been generally recognized from eastern North America based on morphological recognition: H. albidum, H. albomagnum, H. repandum and varieties, H. rufescens, and H.umbilicatum. Other unique North American species, such as H. caespitosum and H. washingtonianum, are either illegitimately named or considered synonymous with European taxa. Here, seventeen phylogenetic species of Hydnum are detected from eastern North America based on a molecular phylogenetic survey of ITS sequences from herbarium collections and GenBank data, including environmental sequences. Based on current distribution results, sixteen of these species appear endemic to North America. Of these, six species are described as new: H. alboaurantiacum, H. cuspidatum, H. ferruginescens, H. subconnatum, H. subtilior, and H. vagabundum. Geographic range extensions and taxonomic notes are provided for five additional species recently described as new from eastern North America. A new name, H. geminum, is proposed for H.caespitosum Banning ex Peck, non Valenti. Overall, species of Hydnum are best recognized by a combination of morphological and molecular phylogenetic analyses. Taxonomic descriptions are provided for seventeen species, including epitype designations for H. albidum, H. albomagnum, and H. umbilicatum, taxa described more than 100 years ago, and molecular annotation of the isotype of H. washingtonianum. Photographs and a key to eastern North American Hydnum species are presented

    A Phylogenetic Classification of the Inocybaceae

    Get PDF
    Abstract Matheny recently recognized seven major lineages composed of Inocybe and allies. Clade names were proposed for each lineage with a suggestion to recognize each informally at the generic rank within the family Inocybaceae. Here, additional taxonomic ramifications are discussed in contrast to other alternative classifications. Generic status for the seven major lineages of Inocybaceae is discussed, taking into consideration a global sample of taxa. A key to major clades and genera is provided

    Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films

    Get PDF
    We demonstrate piezoelectrically actuated, electrically tunable nanomechanical resonators based on multilayers containing a 100-nm-thin aluminum nitride (AlN) layer. Efficient piezoelectric actuation of very high frequency fundamental flexural modes up to ~80 MHz is demonstrated at room temperature. Thermomechanical fluctuations of AlN cantilevers measured by optical interferometry enable calibration of the transduction responsivity and displacement sensitivities of the resonators. Measurements and analyses show that the 100 nm AlN layer employed has an excellent piezoelectric coefficient, d_(31)=2.4 pm/V. Doubly clamped AlN beams exhibit significant frequency tuning behavior with applied dc voltage

    Stable Water Isotopes Reveal Effects of Intermediate Disturbance and Canopy Structure on Forest Water Cycling

    Full text link
    Forests play an integral role in the terrestrial water cycle and link exchanges of water between the land surface and the atmosphere. To examine the effects of an intermediate disturbance on forest water cycling, we compared vertical profiles of stable water vapor isotopes in two closely located forest sites in northern lower Michigan. At one site, all canopy‐dominant early successional species were stem girdled to induce mortality and accelerate senescence. At both sites, we measured the isotopic composition of atmospheric water vapor at six heights during three seasons (spring, summer, and fall) and paired vertical isotope profiles with local meteorology and sap flux. Disturbance had a substantial impact on local water cycling. The undisturbed canopy was moister, retained more transpired vapor, and at times was poorly mixed with the free atmosphere above the canopy. Differences between the disturbed and undisturbed sites were most pronounced in the summer when transpiration was high. Differences in forest structure at the two sites also led to more isotopically stratified vapor within the undisturbed canopy. Our findings suggest that intermediate disturbance may increase mixing between the surface layer and above‐canopy atmosphere and alter ecosystem‐atmosphere gas exchange.Plain Language SummaryForests play an important role in the climate system and link water fluxes between the land surface and the atmosphere. Here we compare water vapor isotopes in two adjacent forest sites in the northern lower peninsula of Michigan to understand the effects of intermediate disturbance and canopy structure on forest water cycling. One site is dominated by aspen and birch and has a thick, closed canopy. All of the aspen and birch were killed at the second site. As a result, the disturbed site has a more open‐canopy structure. From our comparison, we found that both the species of tree and the spacing around trees are important controls on forest water cycling. With more space between trees, air mixes more freely into the canopy, which dries the forest air. Alternatively, air may be poorly mixed within and above thick, closed canopies.Key PointsIntermediate disturbance can change the contribution of entrained, evaporated, and transpired water vapor to forest canopiesCanopy gaps increase hydrologic mixing between the surface layer and the free atmosphereThe assumption of a well‐mixed canopy atmosphere may be violated in the case of thick, homogeneous forest canopiesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152563/1/jgrg21482_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152563/2/jgrg21482.pd

    An isotopic approach to partition evapotranspiration in a mixed deciduous forest

    Full text link
    Transpiration (T) is perhaps the largest fluxes of water from the land surface to the atmosphere and is susceptible to changes in climate, land use and vegetation structure. However, predictions of future transpiration fluxes vary widely and are poorly constrained. Stable water isotopes can help expand our understanding of land–atmosphere water fluxes but are limited by a lack of observations and a poor understanding of how the isotopic composition of transpired vapour (δT) varies. Here, we present isotopic data of water vapour, terrestrial water and plant water from a deciduous forest to understand how vegetation affects water budgets and land–atmosphere water fluxes. We measured subdiurnal variations of δ18OT from three tree species and used water isotopes to partition T from evapotranspiration (ET) to quantify the role of vegetation in the local water cycle. We find that δ18OT deviated from isotopic steady‐state during the day but find no species‐specific patterns. The ratio of T to ET varied from 53% to 61% and was generally invariant during the day, indicating that diurnal evaporation and transpiration fluxes respond to similar atmospheric and micrometeorological conditions at this site. Finally, we compared the isotope‐inferred ratio of T to ET with results from another ET partitioning approach that uses eddy covariance and sap flux data. We find broad midday agreement between these two partitioning techniques, in particular, the absence of a diurnal cycle, which should encourage future ecohydrological isotope studies. Isotope‐inferred estimates of transpiration can inform land surface models and improve our understanding of land–atmosphere water fluxes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162787/2/eco2229.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162787/1/eco2229_am.pd

    Evolution of the Toxins Muscarine and Psilocybin in a Family of Mushroom-Forming Fungi

    Get PDF
    Mushroom-forming fungi produce a wide array of toxic alkaloids. However, evolutionary analyses aimed at exploring the evolution of muscarine, a toxin that stimulates the parasympathetic nervous system, and psilocybin, a hallucinogen, have never been performed. The known taxonomic distribution of muscarine within the Inocybaceae is limited, based only on assays of species from temperate regions of the northern hemisphere. Here, we present a review of muscarine and psilocybin assays performed on species of Inocybaceae during the last fifty years. To supplement these results, we used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to determine whether muscarine was present in 30 new samples of Inocybaceae, the majority of which have not been previously assayed or that originated from either the tropics or temperate regions of the southern hemisphere. Our main objective is to test the hypothesis that the presence of muscarine is a shared ancestral feature of the Inocybaceae. In addition, we also test whether species of Inocyabceae that produce psilocybin are monophyletic. Our findings suggest otherwise. Muscarine has evolved independently on several occasions, together with several losses. We also detect at least two independent transitions of muscarine-free lineages to psilocybin-producing states. Although not ancestral for the family as a whole, muscarine is a shared derived trait for an inclusive clade containing three of the seven major lineages of Inocybaceae (the Inocybe, Nothocybe, and Pseudosperma clades), the common ancestor of which may have evolved ca. 60 million years ago. Thus, muscarine represents a conserved trait followed by several recent losses. Transitions to psilocybin from muscarine-producing ancestors occurred more recently between 10–20 million years ago after muscarine loss in two separate lineages. Statistical analyses firmly reject a single origin of muscarine-producing taxa. DOI: 10.1371/journal.pone.006464
    • …
    corecore