

University of Tennessee, Knoxville Trace: Tennessee Research and Creative **Exchange**

Middle Atlantic States Mycological Conference 2019

Conferences at UT

4-2019

Detecting polyploidy and its role in diversification across Hydnum (Cantharellales)

Rachel Swenie University of Tennessee, Knoxville

P. Brandon Matheny University of Tennessee, Knoxville

Follow this and additional works at: https://trace.tennessee.edu/masmc

Recommended Citation

Swenie, Rachel and Matheny, P. Brandon, "Detecting polyploidy and its role in diversification across Hydnum (Cantharellales)" (2019). Middle Atlantic States Mycological Conference 2019. https://trace.tennessee.edu/masmc/23

This Presentation is brought to you for free and open access by the Conferences at UT at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Middle Atlantic States Mycological Conference 2019 by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

Mid-Atlantic States Mycological Conference (MASMC) University of Tennessee – Knoxville 12-14 April 2019

ABSTRACTS - Oral Presentations

Detecting polyploidy and its role in diversification across Hydnum (Cantharellales)

Rachel Swenie, P. Brandon Matheny Department of Ecology and Evolutionary Biology, University of Tennessee

Whole genome duplication and gene-loss events leading to changes in ploidy levels are well-characterized in plants and animals. However, the frequency of ploidy changes and subsequent effects on diversification are poorly understood in mushroom-forming fungi. Previous research on the genus *Hydnum* (Cantharellales) has suggested that some species vary in ploidy level and differ by as much as a four-fold increase in chromosome sets. If so, ploidy level could correlate with changes in morphology observed across the phylogeny of *Hydnum*. Here, we present a framework to estimate ploidy levels in *Hydnum* and discuss hypotheses regarding the effect of polyploidy on morphology and diversification in the genus. To estimate ploidy levels in *Hydnum*, we collected dense basidiospore deposits from a range of species to compare relative gene content using flow cytometry. To study the phylogenetic distribution of ploidy level and other characters, we constructed a three-gene (ITS, *rbp2*, *tef1*) phylogeny from more than 50 samples of *Hydnum*, which provides a robust evolutionary framework for comparative analysis.