1,259 research outputs found
Generation of Total Angular Momentum Eigenstates in Remote Qubits
We propose a scheme enabling the universal coupling of angular momentum of
 remote noninteracting qubits using linear optical tools only. Our system
consists of  single-photon emitters in a -configuration that are
entangled among their long-lived ground-state qubits through suitably designed
measurements of the emitted photons. In this manner, we present an
experimentally feasible algorithm that is able to generate any of the 
symmetric and nonsymmetric total angular momentum eigenstates spanning the
Hilbert space of the -qubit compound.Comment: 5 pages, 4 figures, improved presentation. Accepted in Physical
  Review 
Detection of a single cobalt microparticle with a microfabricated atomic magnetometer
We present magnetic detection of a single, 2 {\mu}m diameter cobalt
microparticle using an atomic magnetometer based on a microfabricated vapor
cell. These results represent an improvement by a factor of 105 in terms of the
detected magnetic moment over previous work using atomic magnetometers to
detect magnetic microparticles. The improved sensitivity is due largely to the
use of small vapor cells. In an optimized setup, we predict detection limits of
0.17 {\mu}m^3.Comment: 3 pages, 3 figure
Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy
Infrared spectroscopy is a powerful tool for basic and applied science. The
molecular spectral fingerprints in the 3 um to 20 um region provide a means to
uniquely identify molecular structure for fundamental spectroscopy, atmospheric
chemistry, trace and hazardous gas detection, and biological microscopy. Driven
by such applications, the development of low-noise, coherent laser sources with
broad, tunable coverage is a topic of great interest. Laser frequency combs
possess a unique combination of precisely defined spectral lines and broad
bandwidth that can enable the above-mentioned applications. Here, we leverage
robust fabrication and geometrical dispersion engineering of silicon
nanophotonic waveguides for coherent frequency comb generation spanning 70 THz
in the mid-infrared (2.5 um to 6.2 um). Precise waveguide fabrication provides
significant spectral broadening and engineered spectra targeted at specific
mid-infrared bands. We use this coherent light source for dual-comb
spectroscopy at 5 um.Comment: 26 pages, 5 figure
Transition Rates between Mixed Symmetry States: First Measurement in 94Mo
The nucleus 94Mo was investigated using a powerful combination of
gamma-singles photon scattering experiments and gamma-gamma-coincidence studies
following the beta-decay of 94mTc. The data survey short-lived J^pi=1+,2+
states and include branching ratios, E2/M1 mixing ratios, lifetimes, and
transition strengths. The mixed-symmetry (MS) 1+ scissors mode and the 2+ MS
state are identified from M1 strengths. A gamma transition between MS states
was observed and its rate was measured. Nine M1 and E2 strengths involving MS
states agree with the O(6) limit of the interacting boson model-2 using the
proton boson E2 charge as the only free parameter.Comment: 9 pages, 3 PostScript figures included, ReVTeX, accepted for
  publication in Physical Review Letters, tentatively scheduled for August 9,
  199
F-spin as a Partial Symmetry
We use the empirical evidence that F-spin multiplets exist in nuclei for only
selected states as an indication that F-spin can be regarded as a partial
symmetry. We show that there is a class of non-F-scalar IBM-2 Hamiltonians with
partial F-spin symmetry, which reproduce the known systematics of collective
bands in nuclei. These Hamiltonians predict that the scissors states have good
F-spin and form F-spin multiplets, which is supported by the existing data.Comment: 14 pages, 1 figur
O(12) limit and complete classification of symmetry schemes in proton-neutron interacting boson model
It is shown that the proton-neutron interacting boson model (pnIBM) admits
new symmetry limits with O(12) algebra which break F-spin but preserves the
quantum number M_F. The generators of O(12) are derived and the quantum number
`v' of O(12) for a given boson number N is determined by identifying the
corresponding quasi-spin algebra. The O(12) algebra generates two symmetry
schemes and for both of them, complete classification of the basis states and
typical spectra are given. With the O(12) algebra identified, complete
classification of pnIBM symmetry limits with good M_F is established.Comment: 22 pages, 1 figur
Magnetic Dipole Sum Rules for Odd-Mass Nuclei
Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are
derived within the single-j interacting boson-fermion model. We discuss the
physical content and geometric interpretation of these sum rules and apply them
to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but
not with the latter.Comment: 13 pages, Revtex, 1 figure, Phys. Rev. Lett. in pres
Carbon nanofoam supercapacitor electrodes with enhanced performance using a water-transfer process
Carbon nanofoam (CNF) is a highly porous,amorphous carbon nanomaterial that can be produced through the interaction of a high-fluence laser and a carbon-based target material. The morphology and electrical properties of CNF make it an ideal candidate for super-capacitor applications. In this paper, we prepare and characterize CNF supercapacitor electrodes through two different processes, namely, a direct process and a water-transfer process. We elucidate the influence of the production process on the microstructural properties of the CNF, as well as the final electrochemical performance. We show that a change in morphology due to capillary forces doubles the specific capacitance of the wet-transferred CNF electrodes
Strong fragmentation of low-energy electromagnetic excitation strength in Sn
Results of nuclear resonance fluorescence experiments on Sn are
reported. More than 50  transitions with  MeV were
detected indicating a strong fragmentation of the electromagnetic excitation
strength. For the first time microscopic calculations making use of a complete
configuration space for low-lying states are performed in heavy odd-mass
spherical nuclei. The theoretical predictions are in good agreement with the
data. It is concluded that although the E1 transitions are the strongest ones
also M1 and E2 decays contribute substantially to the observed spectra. In
contrast to the neighboring even Sn, in Sn the 
component of the two-phonon  quintuplet built on top of
the 1/2 ground state is proved to be strongly fragmented.Comment: 4 pages, 3 figure
- …
