125 research outputs found

    A Mild Hydration of Nitriles Catalysed by Copper (ll) Acetate

    Get PDF
    A simple, mild and general procedure for the hydration of nitriles to amides using copper as catalyst and promoted by N,N-diethylhydroxylamine is described. The reaction can be conducted in water at low temperature in short reaction times. This new procedure allows amides to be obtained from a wide range of substrates in excellent yields

    Hypercrosslinked materials

    Get PDF
    This chapter describes the chemistry of hypercrosslinked materials, and presents a description of their synthesis, defining physico-chemical features and their most important applications. The synthesis section will examine the different monomers, precursor polymers, reagents and synthetic strategies used to prepare hypercrosslinked materials. Each synthesis section also details the chemical and morphological properties of the hypercrosslinked materials and the main field of application

    Hypercrosslinked materials : preparation, characterisation and applications

    Get PDF
    This review article provides an overview of hypercrosslinking technology. In particular, it covers the preparation and characterisation of hypercrosslinked materials and their applications. The synthesis section examines the different monomers, precursor polymers and reagents used to prepare hypercrosslinked materials, but also the different synthetic approaches disclosed in the literature. The various chemical modification reactions relevant to this area are also reviewed. Several examples of applications for hypercrosslinked materials are described; these applications are grouped into thematic areas such as chromatography, gas storage and the trapping of organic contaminants

    Drivers of phytoplankton responses to summer wind events in a stratified lake: A modeling study

    Get PDF
    Extreme wind events affect lake phytoplankton by deepening the mixed layer and increasing internal nutrient loading. Both increases and decreases in phytoplankton concentration after strong wind events have been observed, but the precise mechanisms driving these responses remain poorly understood or quantified. We coupled a one-dimensional physical model to a biogeochemical model to investigate the factors regulating short-term phytoplankton responses to summer wind events, now and under expected warmer future conditions. We simulated physical, chemical, and biological dynamics in Lake Erken, Sweden, and found that strong wind could increase or decrease the phytoplankton concentration in the euphotic zone 1 week after the event, depending on antecedent lake physical and chemical conditions. Wind had little effect on phytoplankton concentration if the mixed layer was deep prior to wind exposure. Higher incoming shortwave radiation and hypolimnetic nutrient concentration boosted phytoplankton concentration, whereas higher surface water temperatures decreased concentrations after wind events. Medium-intensity wind events resulted in more phytoplankton than high-intensity wind. Simulations under a future climate scenario did not show marked differences in the way wind events affect phytoplankton concentration. These findings help to better understand how wind impacts vary as a function of local environmental conditions and how climate warming and changing extreme weather dynamics will affect lake ecosystems

    Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism

    Get PDF
    During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction.Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here,we study the cranial morphology, aswell as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanismthat mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jawseparation.We hypothesize that this modifiedway of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system
    corecore