50 research outputs found

    Longitudinal Tracking of Human Fetal Cells Labeled with Super Paramagnetic Iron Oxide Nanoparticles in the Brain of Mice with Motor Neuron Disease

    Get PDF
    Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival

    Monitoring Reversible Tight Junction Modulation with a Current-Driven Organic Electrochemical Transistor

    No full text
    The barrier functionality of a cell layer regulates the passage of nutrients into the blood. Modulating the barrier functionality by external chemical agents like poly-l-lysine (PLL) is crucial for drug delivery. The ability of a cell layer to impede the passage of ions through it and therefore to act as a barrier, can be assessed electrically by measuring the resistance across the cell layer. Here, an organic electrochemical transistor (OECT) is used in a current-driven configuration for the evaluation of reversible modulation of tight junctions in Caco-2 cells over time. Exposure to low and medium concentrations of PLL initiates reversible modulation, whereas a too high concentration induces an irreversible barrier disruption due to nonfunctional tight junction proteins. The results demonstrate the suitability of OECTs to in situ monitor temporal barrier modulation and recovery, which can offer valuable information for drug delivery applications
    corecore