7,933 research outputs found

    CPT Violation Implies Violation of Lorentz Invariance

    Get PDF
    An interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.Comment: Minor changes in the published versio

    Complete methods set for scalable ion trap quantum information processing

    Full text link
    Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum computing using qubits stored in the internal states of trapped atomic ions. We quantify the repeatability of a multi-qubit operation, observing no loss of performance despite qubit transport over macroscopic distances. Key to these results is the use of different pairs of beryllium ion hyperfine states for robust qubit storage, readout and gates, and simultaneous trapping of magnesium re-cooling ions along with the qubit ions.Comment: 9 pages, 4 figures. Accepted to Science, and thus subject to a press embarg

    Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    Get PDF
    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and dis- charging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.Comment: arXiv admin note: text overlap with arXiv:1509.0400

    P.A.M. Dirac and the Discovery of Quantum Mechanics

    Full text link
    Dirac's contributions to the discovery of non-relativistic quantum mechanics and quantum electrodynamics, prior to his discovery of the relativistic wave equation, are described

    Euclidean versus hyperbolic congestion in idealized versus experimental networks

    Full text link
    This paper proposes a mathematical justification of the phenomenon of extreme congestion at a very limited number of nodes in very large networks. It is argued that this phenomenon occurs as a combination of the negative curvature property of the network together with minimum length routing. More specifically, it is shown that, in a large n-dimensional hyperbolic ball B of radius R viewed as a roughly similar model of a Gromov hyperbolic network, the proportion of traffic paths transiting through a small ball near the center is independent of the radius R whereas, in a Euclidean ball, the same proportion scales as 1/R^{n-1}. This discrepancy persists for the traffic load, which at the center of the hyperbolic ball scales as the square of the volume, whereas the same traffic load scales as the volume to the power (n+1)/n in the Euclidean ball. This provides a theoretical justification of the experimental exponent discrepancy observed by Narayan and Saniee between traffic loads in Gromov-hyperbolic networks from the Rocketfuel data base and synthetic Euclidean lattice networks. It is further conjectured that for networks that do not enjoy the obvious symmetry of hyperbolic and Euclidean balls, the point of maximum traffic is near the center of mass of the network.Comment: 23 pages, 4 figure

    Spectral plots and the representation and interpretation of biological data

    Full text link
    It is basic question in biology and other fields to identify the char- acteristic properties that on one hand are shared by structures from a particular realm, like gene regulation, protein-protein interaction or neu- ral networks or foodwebs, and that on the other hand distinguish them from other structures. We introduce and apply a general method, based on the spectrum of the normalized graph Laplacian, that yields repre- sentations, the spectral plots, that allow us to find and visualize such properties systematically. We present such visualizations for a wide range of biological networks and compare them with those for networks derived from theoretical schemes. The differences that we find are quite striking and suggest that the search for universal properties of biological networks should be complemented by an understanding of more specific features of biological organization principles at different scales.Comment: 15 pages, 7 figure

    Magneto Seebeck effect in REFeAsO (RE=rare earth) compounds: probing the magnon drag scenario

    Get PDF
    We investigate Seebeck effect in REFeAsO (RE=rare earth)compounds as a function of temperature and magnetic field up to 30T. The Seebeck curves are characterized by a broad negative bump around 50K, which is sample dependent and strongly enhanced by the application of a magnetic field. A model for the temperature and field dependence of the magnon drag contribution to the Seebeck effect by antiferromagnetic (AFM) spin fluctuation is developed. It accounts for the magnitude and scaling properties of such bump feature in our experimental data. This analysis allows to extract precious information on the coupling between electrons and AFM spin fluctuations in these parent compound systems, with implications on the pairing mechanism of the related superconducting compounds

    Spectral Properties and Synchronization in Coupled Map Lattices

    Full text link
    Spectral properties of Coupled Map Lattices are described. Conditions for the stability of spatially homogeneous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also presented. The analytical results are supplemented with numerical examples. The quadratic map is used for the site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate range coupling, random coupling, small world coupling and scale free coupling.Comment: 10 pages with 15 figures (Postscript), REVTEX format. To appear in PR
    corecore