3,945 research outputs found

    Statistical analysis of time transfer data from Timation 2

    Get PDF
    Between July 1973 and January 1974, three time transfer experiments using the Timation 2 satellite were conducted to measure time differences between the U.S. Naval Observatory and Australia. Statistical tests showed that the results are unaffected by the satellite's position with respect to the sunrise/sunset line or by its closest approach azimuth at the Australian station. Further tests revealed that forward predictions of time scale differences, based on the measurements, can be made with high confidence

    Interacting quantum walkers: Two-body bosonic and fermionic bound states

    Get PDF
    We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.Comment: 31 pages, 14 figure

    Return probability of NN fermions released from a 1D confining potential

    Full text link
    We consider NN non-interacting fermions prepared in the ground state of a 1D confining potential and submitted to an instantaneous quench consisting in releasing the trapping potential. We show that the quantum return probability of finding the fermions in their initial state at a later time falls off as a power law in the long-time regime, with a universal exponent depending only on NN and on whether the free fermions expand over the full line or over a half-line. In both geometries the amplitudes of this power-law decay are expressed in terms of finite determinants of moments of the one-body bound-state wavefunctions in the potential. These amplitudes are worked out explicitly for the harmonic and square-well potentials. At large fermion numbers they obey scaling laws involving the Fermi energy of the initial state. The use of the Selberg-Mehta integrals stemming from random matrix theory has been instrumental in the derivation of these results.Comment: 24 pages, 1 tabl

    Survival of classical and quantum particles in the presence of traps

    Full text link
    We present a detailed comparison of the motion of a classical and of a quantum particle in the presence of trapping sites, within the framework of continuous-time classical and quantum random walk. The main emphasis is on the qualitative differences in the temporal behavior of the survival probabilities of both kinds of particles. As a general rule, static traps are far less efficient to absorb quantum particles than classical ones. Several lattice geometries are successively considered: an infinite chain with a single trap, a finite ring with a single trap, a finite ring with several traps, and an infinite chain and a higher-dimensional lattice with a random distribution of traps with a given density. For the latter disordered systems, the classical and the quantum survival probabilities obey a stretched exponential asymptotic decay, albeit with different exponents. These results confirm earlier predictions, and the corresponding amplitudes are evaluated. In the one-dimensional geometry of the infinite chain, we obtain a full analytical prediction for the amplitude of the quantum problem, including its dependence on the trap density and strength.Comment: 35 pages, 10 figures, 2 tables. Minor update

    Statistics of quantum transmission in one dimension with broad disorder

    Full text link
    We study the statistics of quantum transmission through a one-dimensional disordered system modelled by a sequence of independent scattering units. Each unit is characterized by its length and by its action, which is proportional to the logarithm of the transmission probability through this unit. Unit actions and lengths are independent random variables, with a common distribution that is either narrow or broad. This investigation is motivated by results on disordered systems with non-stationary random potentials whose fluctuations grow with distance. In the statistical ensemble at fixed total sample length four phases can be distinguished, according to the values of the indices characterizing the distribution of the unit actions and lengths. The sample action, which is proportional to the logarithm of the conductance across the sample, is found to obey a fluctuating scaling law, and therefore to be non-self-averaging, in three of the four phases. According to the values of the two above mentioned indices, the sample action may typically grow less rapidly than linearly with the sample length (underlocalization), more rapidly than linearly (superlocalization), or linearly but with non-trivial sample-to-sample fluctuations (fluctuating localization).Comment: 26 pages, 4 figures, 1 tabl

    Spectral properties of zero temperature dynamics in a model of a compacting granular column

    Full text link
    The compacting of a column of grains has been studied using a one-dimensional Ising model with long range directed interactions in which down and up spins represent orientations of the grain having or not having an associated void. When the column is not shaken (zero 'temperature') the motion becomes highly constrained and under most circumstances we find that the generator of the stochastic dynamics assumes an unusual form: many eigenvalues become degenerate, but the associated multi-dimensional invariant spaces have but a single eigenvector. There is no spectral expansion and a Jordan form must be used. Many properties of the dynamics are established here analytically; some are not. General issues associated with the Jordan form are also taken up.Comment: 34 pages, 4 figures, 3 table

    Many Uninsured Children Qualify for Medi-Cal or Healthy Families

    Get PDF
    Examines the public health insurance eligibility of children in California who did not have health insurance coverage for some or all of the year in 2002, to highlight the geographic variations in children's uninsured eligibility rates

    Statistics of leaders and lead changes in growing networks

    Full text link
    We investigate various aspects of the statistics of leaders in growing network models defined by stochastic attachment rules. The leader is the node with highest degree at a given time (or the node which reached that degree first if there are co-leaders). This comprehensive study includes the full distribution of the degree of the leader, its identity, the number of co-leaders, as well as several observables characterizing the whole history of lead changes: number of lead changes, number of distinct leaders, lead persistence probability. We successively consider the following network models: uniform attachment, linear attachment (the Barabasi-Albert model), and generalized preferential attachment with initial attractiveness.Comment: 28 pages, 14 figures, 1 tabl

    Anisotropic Scaling in Layered Aperiodic Ising Systems

    Full text link
    The influence of a layered aperiodic modulation of the couplings on the critical behaviour of the two-dimensional Ising model is studied in the case of marginal perturbations. The aperiodicity is found to induce anisotropic scaling. The anisotropy exponent z, given by the sum of the surface magnetization scaling dimensions, depends continuously on the modulation amplitude. Thus these systems are scale invariant but not conformally invariant at the critical point.Comment: 7 pages, 2 eps-figures, Plain TeX and epsf, minor correction
    corecore