27 research outputs found

    Genetic information transfer promotes cooperation in bacteria

    Get PDF
    Many bacterial species are social, producing costly secreted “public good” molecules that enhance the growth of neighboring cells. The genes coding for these cooperative traits are often propagated via mobile genetic elements and can be virulence factors from a biomedical perspective. Here, we present an experimental framework that links genetic information exchange and the selection of cooperative traits. Using simulations and experiments based on a synthetic bacterial system to control public good secretion and plasmid conjugation, we demonstrate that horizontal gene transfer can favor cooperation. In a well-mixed environment, horizontal transfer brings a direct infectious advantage to any gene, regardless of its cooperation properties. However, in a structured population transfer selects specifically for cooperation by increasing the assortment among cooperative alleles. Conjugation allows cooperative alleles to overcome rarity thresholds and invade bacterial populations structured purely by stochastic dilution effects. Our results provide an explanation for the prevalence of cooperative genes on mobile elements, and suggest a previously unidentified benefit of horizontal gene transfer for bacteria

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    Measurements of the impedance matrix of a thermoacoustic core: Applications to the design of thermoacoustic engines

    No full text
    The successful design of a thermoacoustic engine depends on the appropriate description of the processes involved inside the thermoacoustic core (TAC). This is a difficult task when considering the complexity of both the heat transfer phenomena and the geometry of the porous material wherein the thermoacoustic amplification process occurs. An attempt to getting round this difficulty consists in measuring the TAC transfer matrix under various heating conditions, the measured transfer matrices being exploited afterward into analytical models describing the complete apparatus. In this paper, a method based on impedance measurements is put forward, which allows the accurate measurement of the TAC transfer matrix, contrarily to the classical two-load method. Four different materials are tested, each one playing as the porous element allotted inside the TAC, which is submitted to different temperature gradients to promote thermoacoustic amplification. The experimental results are applied to the modeling of basic standing-wave and traveling-wave engines, allowing the prediction of the engine operating frequency and thermoacoustic amplification gain, as well as the optimum choice of the components surrounding the TAC. (C) 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4796131]133512650266

    Velocity of Mass Transport to Model Acoustic Streaming: Numerical Application to Annular Resonators

    No full text
    International audienc

    Nonlinear System Identification Using Exponential Swept-Sine Signal

    No full text

    Modèle à constantes localisées de transducteurs : dissipation dans les couches limites

    No full text
    The main purpose of the paper is to provide, in an analytic way, an electrical network which describes the behaviour of electrostatic or electret transducers, and which takes into account the effects of the strong coupling between the mechanical and acoustical parts of the system ; the conventional model seems to be improved to describe new miniaturized transducers with a good accuracy

    Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids

    No full text
    <div><p>Bacterial genes that confer crucial phenotypes, such as antibiotic resistance, can spread horizontally by residing on mobile genetic elements (MGEs). Although many mobile genes provide strong benefits to their hosts, the fitness consequences of the process of transfer itself are less clear. In previous studies, transfer has been interpreted as a parasitic trait of the MGEs because of its costs to the host but also as a trait benefiting host populations through the sharing of a common gene pool. Here, we show that costly donation is an altruistic act when it spreads beneficial MGEs favoured when it increases the inclusive fitness of donor ability alleles. We show mathematically that donor ability can be selected when relatedness at the locus modulating transfer is sufficiently high between donor and recipients, ensuring high frequency of transfer between cells sharing donor alleles. We further experimentally demonstrate that either population structure or discrimination in transfer can increase relatedness to a level selecting for chromosomal transfer alleles. Both mechanisms are likely to occur in natural environments. The simple process of strong dilution can create sufficient population structure to select for donor ability. Another mechanism observed in natural isolates, discrimination in transfer, can emerge through coselection of transfer and discrimination alleles. Our work shows that horizontal gene transfer in bacteria can be promoted by bacterial hosts themselves and not only by MGEs. In the longer term, the success of cells bearing beneficial MGEs combined with biased transfer leads to an association between high donor ability, discrimination, and mobile beneficial genes. However, in conditions that do not select for altruism, host bacteria promoting transfer are outcompeted by hosts with lower transfer rate, an aspect that could be relevant in the fight against the spread of antibiotic resistance.</p></div

    Default parameter values used in simulations.

    No full text
    <p>Parameters were generally based on our experimental measurements (see <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002478#sec015" target="_blank">Materials and Methods</a> for details and exceptions).</p

    Selection of donor ability in structured populations.

    No full text
    <p><b>A: Experimental setup.</b> D<sup>+</sup> (good donor, red) and D<sup>−</sup> (nondonor, blue) strains are competed. 2.5% of D<sup>+</sup> and D<sup>−</sup> cells initially carry C plasmids (bright colours), while 97.5% do not (pale colours). The population <i>m</i> is a single well-mixed population; metapopulation <i>s</i> consists of two subpopulations, <i>s</i><sub><i>1</i></sub> and <i>s</i><sub><i>2</i></sub>, with initial D<sup>+</sup>/D<sup>−</sup> ratios of 1/9 and 9/1. After growth and transfer (t<sub>0</sub> to t<sub>1</sub>), subpopulations from <i>s</i> are pooled and cells are grown to saturation with or without antibiotic (Cm) selection (t<sub>1</sub> to t<sub>2</sub>). The proportions of different cell types are represented schematically and do not correspond to actual numbers. <b>B: Selection of D</b><sup><b>+</b></sup> <b>strain.</b> The frequency of the good donor D<sup>+</sup> is shown for <i>s</i> (black) and <i>m</i> (green) populations, with (plain lines) or without (dashed lines) Cm antibiotic during the selection phase. Good donors are only selected for in the <i>s</i> metapopulation, in the presence of antibiotic. <b>C: Plasmid dynamics.</b> Plasmid frequency in each population is shown for the transfer phase (from t<sub>0</sub> to t<sub>1</sub>)<sub>,</sub> in each of <i>m</i>, <i>s</i><sub><i>1</i></sub>, and <i>s</i><sub><i>2</i></sub> populations. Plasmids spread mostly in the s<sub>2</sub> subpopulation, enriched in the better donor, D<sup>+</sup>. <b>D: Transfer bias.</b> The proportion of C plasmids present in D<sup>+</sup> strain, is shown as a function of time for <i>s</i> and <i>m</i> populations (same colour scheme as in B panel). C plasmids get enriched in the better donor D<sup>+</sup> strain during the transfer phase, for the structured population <i>s</i>. All results are shown as means ± SEM. (<i>N</i> ≥ 6). Data are available from FigShare at <a href="http://dx.doi.org/10.6084/m9.figshare.3199252" target="_blank">http://dx.doi.org/10.6084/m9.figshare.3199252</a>.</p
    corecore