3,804 research outputs found
Experimental verification of reciprocity relations in quantum thermoelectric transport
Symmetry relations are manifestations of fundamental principles and
constitute cornerstones of modern physics. An example are the Onsager relations
between coefficients connecting thermodynamic fluxes and forces, central to
transport theory and experiments. Initially formulated for classical systems,
these reciprocity relations are also fulfilled in quantum conductors.
Surprisingly, novel relations have been predicted specifically for
thermoelectric transport. However, whereas these thermoelectric reciprocity
relations have to date not been verified, they have been predicted to be
sensitive to inelastic scattering, always present at finite temperature. The
question whether the relations exist in practice is important for
thermoelectricity: whereas their existence may simplify the theory of complex
thermoelectric materials, their absence has been shown to enable, in principle,
higher thermoelectric energy conversion efficiency for a given material
quality. Here we experimentally verify the thermoelectric reciprocity relations
in a four-terminal mesoscopic device where each terminal can be electrically
and thermally biased, individually. The linear response thermoelectric
coefficients are found to be symmetric under simultaneous reversal of magnetic
field and exchange of injection and emission contacts. Intriguingly, we also
observe the breakdown of the reciprocity relations as a function of increasing
thermal bias. Our measurements thus clearly establish the existence of the
thermoelectric reciprocity relations, as well as the possibility to control
their breakdown with the potential to enhance thermoelectric performanceComment: 7 pages, 5 figure
Diffusion Enhancement in a Periodic Potential under High-Frequency Space-Dependent Forcing
We study the long-time behavior of underdamped Brownian particle moving
through a viscous medium and in a systematic potential, when it is subjected to
a space-dependent high-frequency periodic force. When the frequency is very
large, much larger than all other relevant system-frequencies, there is a
Kapitsa time-window wherein the effect of frequency dependent forcing can be
replaced by a static effective potential. Our new analysis includes the case
when the forcing, in addition to being frequency-dependent, is space-dependent
as well. The results of the Kapitsa analysis then lead to additional
contributions to the effective potential. These are applied to the numerical
calculation of the diffusion coefficient (D) for a Brownian particle moving in
a periodic potential. Presented are numerical results, which are in excellent
agreement with theoretical predictions and which indicate a significant
enhancement of D due to the space-dependent forcing terms. In addition we study
the transport property (current) of underdamped Brownian particles in a ratchet
potential.Comment: RevTex 6 pages, 5 figure
Demon-free quantum Brownian motors
A quantum Smoluchowski equation is put forward that consistently describes
thermal quantum states. In particular, it notably does not induce a violation
of the second law of thermodynamics. This so modified kinetic equation is
applied to study {\it analytically} directed quantum transport at strong
friction in arbitrarily shaped ratchet potentials that are driven by nonthermal
two-state noise. Depending on the mutual interplay of quantum tunneling and
quantum reflection these quantum corrections can induce both, either a sizable
enhancement or a suppression of transport. Moreover, the threshold for current
reversals becomes markedly shifted due to such quantum fluctuations.Comment: 4 pages 3 figure
Enhanced Zeeman splitting in Ga0.25In0.75As quantum point contacts
The strength of the Zeeman splitting induced by an applied magnetic field is
an important factor for the realization of spin-resolved transport in
mesoscopic devices. We measure the Zeeman splitting for a quantum point contact
etched into a Ga0.25In0.75As quantum well, with the field oriented parallel to
the transport direction. We observe an enhancement of the Lande g-factor from
|g*|=3.8 +/- 0.2 for the third subband to |g*|=5.8 +/- 0.6 for the first
subband, six times larger than in GaAs. We report subband spacings in excess of
10 meV, which facilitates quantum transport at higher temperatures.Comment: [Version 2] Revtex4, 11 pages, 3 figures, accepted for publication in
Applied Physics Letter
Brownian motors: current fluctuations and rectification efficiency
With this work we investigate an often neglected aspect of Brownian motor
transport: The r\^{o}le of fluctuations of the noise-induced current and its
consequences for the efficiency of rectifying noise. In doing so, we consider a
Brownian inertial motor that is driven by an unbiased monochromatic,
time-periodic force and thermal noise. Typically, we find that the asymptotic,
time- and noise-averaged transport velocities are small, possessing rather
broad velocity fluctuations. This implies a corresponding poor performance for
the rectification power. However, for tailored profiles of the ratchet
potential and appropriate drive parameters, we can identify a drastic
enhancement of the rectification efficiency. This regime is marked by
persistent, uni-directional motion of the Brownian motor with few back-turns,
only. The corresponding asymmetric velocity distribution is then rather narrow,
with a support that predominantly favors only one sign for the velocity.Comment: 9 pages, 4 figure
Resolution of the Landau pole problem in QED
We present new numerical results for the renormalized mass and coupling in
non-compact lattice QED with staggered fermions. Implications for the continuum
limit and the role of the Landau pole are discussed.Comment: 3 pages, talk presented by H. St\"uben at Lattice '97, Edinburg
Thermal ratchet effects in ferrofluids
Rotational Brownian motion of colloidal magnetic particles in ferrofluids
under the influence of an oscillating external magnetic field is investigated.
It is shown that for a suitable time dependence of the magnetic field, a noise
induced rotation of the ferromagnetic particles due to rectification of thermal
fluctuations takes place. Via viscous coupling, the associated angular momentum
is transferred from the magnetic nano-particles to the carrier liquid and can
then be measured as macroscopic torque on the fluid sample. A thorough
theoretical analysis of the effect in terms of symmetry considerations,
analytical approximations, and numerical solutions is given which is in
accordance with recent experimental findings.Comment: 18 pages, 6 figure
Multi-directional sorting modes in deterministic lateral displacement devices
Deterministic lateral displacement (DLD) devices separate micrometer-scale
particles in solution based on their size using a laminar microfluidic flow in
an array of obstacles. We investigate array geometries with rational row-shift
fractions in DLD devices by use of a simple model including both advection and
diffusion. Our model predicts novel multi-directional sorting modes that could
be experimentally tested in high-throughput DLD devices containing obstacles
that are much smaller than the separation between obstacles
- …
