2,246 research outputs found

    Engineering calculations for the Delta S method of solving the orbital allotment problem

    Get PDF
    The method of calculating single-entry separation requirements for pairs of satellites is extended to include the interference on the top link as well as on the down link. Several heuristic models for analyzing the effects of shaped-beam antenna designs on required satellite separations are introduced and demonstrated with gain contour plots. The calculation of aggregate interference is extended to include the effects of up-link interference. The relationship between the single-entry C/I requirements, used in determining satellite separation constraints for various optimization procedures, and the aggregate C/I values of the resulting solutions is discussed

    The concept of correlated density and its application

    Full text link
    The correlated density appears in many physical systems ranging from dense interacting gases up to Fermi liquids which develop a coherent state at low temperatures, the superconductivity. One consequence of the correlated density is the Bernoulli potential in superconductors which compensates forces from dielectric currents. This Bernoulli potential allows to access material parameters. Though within the surface potential these contributions are largely canceled, the bulk measurements with NMR can access this potential. Recent experiments are explained and new ones suggested. The underlying quantum statistical theory in nonequilibrium is the nonlocal kinetic theory developed earlier.Comment: 14 pages, CMT30 proceeding

    Design and Implementation of a State-Driven Operating System for Highly Reconfigurable Sensor Networks

    Get PDF
    Due to the low-cost and low-power requirement in an individual sensor node, the available computing resources turn out to be very limited like small memory footprint and irreplaceable battery power. Sensed data fusion might be needed before being transmitted as a tradeoff between procession and transmission in consideration of saving power consumption. Even worse, the application program needs to be complicated enough to be self-organizing and dynamically reconfigurable because changes in an operating environment continue even after deployment. State-driven operating system platform offers numerous benefits in this challenging situation. It provides a powerful way to accommodate complex reactive systems like diverse wireless sensor network applications. The memory usage can be bounded within a state transition table. The complicated issues like concurrency control and asynchronous event handling capabilities can be easily achieved in a well-defined behavior of state transition diagram. In this paper, we present an efficient and effective design of the state-driven operating system for wireless sensor nodes. We describe that the new platform can operate in an extremely resource constrained situation while providing the desired concurrency, reactivity, and reconfigurability. We also compare the executing results after comparing some benchmark test results with those on TinyOS

    Evaluation of Externality Costs in Life-Cycle Optimization of Municipal Solid Waste Management Systems

    Get PDF
    The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including “budget costs” and “externality costs”. Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, PM<sub>2.5</sub>, PM<sub>10</sub>, NO<sub><i>x</i></sub>, SO<sub>2</sub>, VOC, CO, NH<sub>3</sub>, Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO<sub>2</sub>, NO<sub><i>x</i></sub>, PM<sub>2.5</sub>, CH<sub>4</sub>, fossil CO<sub>2</sub>, and NH<sub>3</sub> emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses

    Population control of 2s-2p transitions in hydrogen

    Full text link
    We consider the time evolution of the occupation probabilities for the 2s-2p transition in a hydrogen atom interacting with an external field, V(t). A two-state model and a dipole approximation are used. In the case of degenerate energy levels an analytical solution of the time-dependent Shroedinger equation for the probability amplitudes exists. The form of the solution allows one to choose the ratio of the field amplitude to its frequency that leads to temporal trapping of electrons in specific states. The analytic solution is valid when the separation of the energy levels is small compared to the energy of the interacting radiation.Comment: 6 pages, 3 figure

    Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude northern hemisphere. Part I: Uncoupled DGVMs

    Get PDF
    PublishedJournal ArticleLeaf Area Index (LAI) represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN) from the latest version (third generation) of GIMMS AVHRR NDVI data over the period 1986-2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees. © 2013 by the authors.The corresponding author also thanks the CONACYT-CECTI and the University of Exeter for their funding during the PhD studies. The National Center for Atmospheric Research is sponsored by the National Science Foundation

    ABVD plus radiotherapy versus EVE plus radiotherapy in unfavorable stage IA and IIA Hodgkin's lymphoma: results from an Intergruppo Italiano Linfomi randomized study.

    Get PDF
    BACKGROUND: In 1997, the Intergruppo Italiano Linfomi started a randomized trial to evaluate, in unfavorable stage IA and IIA Hodgkin's lymphoma (HL) patients, the efficacy and toxicity of the low toxic epirubicin, vinblastine and etoposide (EVE) regimen followed by involved field radiotherapy in comparison to the gold standard doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) regimen followed by the same radiotherapy program. PATIENTS AND METHODS: Patients should be younger than 65 years with unfavorable stage IA and IIA HL (i.e. stage IA or IIA with bulky disease and/or subdiaphragmatic disease, erythrocyte sedimentation rate higher than 40, extranodal (E) involvement, hilar involvement and more than three involved lymph node areas). RESULTS: Ninety-two patients were allocated to the ABVD arm and 89 to the EVE arm. Complete remission (CR) rates at the end of treatment program [chemotherapy (CT) + RT] were 93% and 92% for ABVD and EVE arms, respectively (P = NS). The 5-year relapse-free survival (RFS) rate was 95% for ABVD and 78% for EVE (P < 0.05). As a consequence of the different relapse rate, the 5-year failure-free survival (FFS) rate was significantly better for ABVD (90%) than for EVE (73%) arm (P < 0.05). No differences in terms of overall survival (OS) were observed for the two study arms. CONCLUSIONS: In unfavorable stage IA and IIA HL patients, no differences were observed between ABVD and EVE arms in terms of CR rate and OS. EVE CT, however, was significantly worse than ABVD in terms of RFS and FFS and cannot be recommended as initial treatment for HL
    corecore