340 research outputs found

    Isolation and characterization of a gene for a major light-harvesting polypeptide from Cyanophora paradoxa

    Full text link

    Transposon-mediated gene search: finding a needle in a haystack

    Get PDF

    VIMOS Ultra-Deep Survey (VUDS): Witnessing the assembly of a massive cluster at z ~ 3.3

    Get PDF
    Using new spectroscopic observations obtained as part of the VIMOS Ultra-Deep Survey (VUDS), we performed a systematic search for overdense environments in the early universe (z > 2) and report here on the discovery of C1 J0227-0421, a massive protocluster at z = 3.29. This protocluster is characterized by both the large overdensity of spectroscopically confirmed members, δ_(gal) = 10.5 ± 2.8, and a significant overdensity in photometric redshift members. The halo mass of this protocluster is estimated by a variety of methods to be ~3 x 10^(14) M_☉ at z ~ 3.3, which, evolved to z = 0 results in a halo mass rivaling or exceeding that of the Coma cluster. The properties of 19 spectroscopically confirmed member galaxies are compared with a large sample of VUDS/VVDS galaxies in lower density field environments at similar redshifts. We find tentative evidence for an excess of redder, brighter, and more massive galaxies within the confines of the protocluster relative to the field population, which suggests that we may be observing the beginning of environmentally induced quenching. The properties of these galaxies are investigated, including a discussion of the brightest protocluster galaxy, which appears to be undergoing vigorous coeval nuclear and starburst activity. The remaining member galaxies appear to have characteristics that are largely similar to the field population. Though we find weaker evidence of the suppression of the median star formation rates among and differences in the stacked spectra of member galaxies with respect to the field, we defer any conclusions about these trends to future work with the ensemble of protostructures that are found in the full VUDS sample

    Generation of Large Numbers of Independently Transformed Fertile Barley Plants

    Full text link

    The DEEP2 Redshift Survey: Lyman Alpha Emitters in the Spectroscopic Database

    Full text link
    We present the first results of a search for Lyman-alpha emitters (LAEs) in the DEEP2 spectroscopic database that uses a search technique that is different from but complementary to traditional narrowband imaging surveys. We have visually inspected ~20% of the available DEEP2 spectroscopic data and have found nine high-quality LAEs with clearly asymmetric line profiles and an additional ten objects of lower quality, some of which may also be LAEs. Our survey is most sensitive to LAEs at z=4.4-4.9 and that is indeed where all but one of our high-quality objects are found. We find the number density of our spectroscopically-discovered LAEs to be consistent with those found in narrowband imaging searches. The combined, averaged spectrum of our nine high-quality objects is well fit by a two-component model, with a second, lower-amplitude component redshifted by ~420 km/s with respect to the primary Lyman-alpha line, consistent with large-scale outflows from these objects. We conclude by discussing the advantages and future prospects of blank-sky spectroscopic surveys for high-z LAEs.Comment: Accepted for publication in Ap

    The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2<z<6.5 in the VIMOS Ultra-Deep Survey

    Get PDF
    We aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with spectroscopic redshifts 2<z<6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u-band up to 4.5 microns using composite stellar population models. We conclude from extensive simulations that at z>2 the joint analysis of spectroscopy and photometry combined with restricted age possibilities when taking into account the age of the Universe substantially reduces systematic uncertainties and degeneracies in the age derivation. We find galaxy ages ranging from very young with a few tens of million years to substantially evolved with ages up to ~1.5-2 Gyr. The formation redshifts z_f derived from the measured ages indicate that galaxies may have started forming stars as early as z_f~15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift z_f, and compare the FzF in increasing redshift bins finding a remarkably constant 'universal' FzF. The FzF is parametrized with (1+z)^\zeta, with \zeta~0.58+/-0.06, indicating a smooth 2 dex increase from z~15 to z~2. Remarkably this observed increase is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the SFRD with the FzF gives an average SFR per galaxy of ~7-17Msun/yr at z~4-6, in agreement with the measured SFR for galaxies at these redshifts. From the smooth rise in the FzF we infer that the period of galaxy formation extends from the highest possible redshifts that we can probe at z~15 down to redshifts z~2. This indicates that galaxy formation is a continuous process over cosmic time, with a higher number of galaxies forming at the peak in SFRD at z~2 than at earlier epochs. (Abridged)Comment: Submitted to A&A, 24 page

    HeII emitters in the VIMOS VLT Deep Survey: PopIII star formation or peculiar stellar populations in galaxies at 2<z<4.6?

    Get PDF
    The aim of this work is to identify HeII emitters at 2<z<4.6 and to constrain the source of the hard ionizing continuum that powers the HeII emission. We have assembled a sample of 277 galaxies with a high quality spectroscopic redshift at 2<z<4.6 from the VVDS survey, and we have identified 39 HeII1640A emitters. We study their spectral properties, measuring the fluxes, equivalent widths (EW) and FWHM for most relevant lines. About 10% of galaxies at z~3 show HeII in emission, with rest frame equivalent widths EW0~1-7A, equally distributed between galaxies with Lya in emission or in absorption. We find 11 high-quality HeII emitters with unresolved HeII line (FWHM_0<1200km/s), 13 high-quality emitters with broad He II emission (FWHM_0>1200km/s), 3 AGN, and an additional 12 possible HeII emitters. The properties of the individual broad emitters are in agreement with expectations from a W-R model. On the contrary, the properties of the narrow emitters are not compatible with such model, neither with predictions of gravitational cooling radiation produced by gas accretion. Rather, we find that the EW of the narrow HeII line emitters are in agreement with expectations for a PopIII star formation, if the episode of star formation is continuous, and we calculate that a PopIII SFR of 0.1-10 Mo yr-1 only is enough to sustain the observed HeII flux. We conclude that narrow HeII emitters are either powered by the ionizing flux from a stellar population rare at z~0 but much more common at z~3, or by PopIII star formation. As proposed by Tornatore et al. (2007), incomplete ISM mixing may leave some small pockets of pristine gas at the periphery of galaxies from which PopIII may form, even down to z~2 or lower. If this interpretation is correct, we measure at z~3 a SFRD in PopIII stars of 10^6Mo yr^-1 Mpc^-3 qualitatively comparable to the value predicted by Tornatore et al. (2007).Comment: accepted for publication in A&

    Limits on the LyC signal from z~3 sources with secure redshift and HST coverage in the E-CDFS field

    Get PDF
    Aim: We aim to measure the LyC signal from a sample of sources in the Chandra deep field south. We collect star-forming galaxies (SFGs) and active galactic nuclei (AGN) with accurate spectroscopic redshifts, for which Hubble Space Telescope (HST) coverage and multi-wavelength photometry are available. Method: We selected a sample of about 200 sources at z~3. Taking advantage of HST resolution, we applied a careful cleaning procedure and rejected sources showing nearby clumps with different colours, which could be lower-z interlopers. Our clean sample consisted of 86 SFGs (including 19 narrow-band selected Lya emitters) and 8 AGN (including 6 detected in X-rays). We measured the LyC flux from aperture photometry in four narrow-band filters covering wavelengths below a 912 A rest frame (3.11<z<3.53). We estimated the ratio between ionizing (LyC flux) and 1400 A non-ionizing emissions for AGN and galaxies. Results: By running population synthesis models, we assume an average intrinsic L(1400 A)/L(900 A) ratio of 5 as the representative value for our sample. With this value and an average treatment of the lines of sight of the inter-galactic medium, we estimate the LyC escape fraction relative to the intrinsic value (fesc_rel(LyC)). We do not directly detect ionizing radiation from any individual SFG, but we are able to set a 1(2)sigma upper limit of fesc_rel(LyC)<12(24)%. This result is consistent with other non-detections published in the literature. No meaningful limits can be calculated for the sub-sample of Lya emitters. We obtain one significant direct detection for an AGN at z=3.46, with fesc_rel(LyC) = (72+/-18)%. Conclusions: Our upper limit on fescrel(LyC) implies that the SFGs studied here do not present either the physical properties or the geometric conditions suitable for efficient LyC-photon escape.Comment: Accepted for publication in A&A on Jan 5th, 201
    • …
    corecore