12,628 research outputs found

    Analyticity of the SRB measure for a class of simple Anosov flows

    Full text link
    We consider perturbations of the Hamiltonian flow associated with the geodesic flow on a surface of constant negative curvature. We prove that, under a small perturbation, not necessarely of Hamiltonian character, the SRB measure associated to the flow exists and is analytic in the strength of the perturbation. An explicit example of "thermostatted" dissipative dynamics is constructed.Comment: 23 pages, corrected typo

    Optimal fidelity of teleportation of coherent states and entanglement

    Full text link
    We study the Braunstein-Kimble protocol for the continuous variable teleportation of a coherent state. We determine lower and upper bounds for the optimal fidelity of teleportation, maximized over all local Gaussian operations for a given entanglement of the two-mode Gaussian state shared by the sender (Alice) and the receiver (Bob). We also determine the optimal local transformations at Alice and Bob sites and the corresponding maximum fidelity when one restricts to local trace-preserving Gaussian completely positive maps.Comment: 10 pages, 2 figure

    Feedback Enhanced Sensitivity in Optomechanics: Surpassing the Parametric Instability Barrier

    Get PDF
    The intracavity power, and hence sensitivity, of optomechanical sensors is commonly limited by parametric instability. Here we characterize the parametric instability induced sensitivity degradation in a micron scale cavity optomechanical system. Feedback via optomechanical transduction and electrical gradient force actuation is applied to suppress the parametric instability. As a result a 5.4 fold increase in mechanical motion transduction sensitivity is achieved to a final value of 1.9×1018mHz1/21.9\times 10^{-18}\rm m Hz^{-1/2}.Comment: 4 pages, 4 figure

    Inversely Unstable Solutions of Two-Dimensional Systems on Genus-p Surfaces and the Topology of Knotted Attractors

    Full text link
    In this paper, we will show that a periodic nonlinear, time-varying dissipative system that is defined on a genus-p surface contains one or more invariant sets which act as attractors. Moreover, we shall generalize a result in [Martins, 2004] and give conditions under which these invariant sets are not homeomorphic to a circle individually, which implies the existence of chaotic behaviour. This is achieved by studying the appearance of inversely unstable solutions within each invariant set.Comment: 19 pages with 20 figures, AMS La-TeX, to be published in International Journal of Bifurcation and Chao

    Evanescent single-molecule biosensing with quantum limited precision

    Full text link
    Sensors that are able to detect and track single unlabelled biomolecules are an important tool both to understand biomolecular dynamics and interactions at nanoscale, and for medical diagnostics operating at their ultimate detection limits. Recently, exceptional sensitivity has been achieved using the strongly enhanced evanescent fields provided by optical microcavities and nano-sized plasmonic resonators. However, at high field intensities photodamage to the biological specimen becomes increasingly problematic. Here, we introduce an optical nanofibre based evanescent biosensor that operates at the fundamental precision limit introduced by quantisation of light. This allows a four order-of-magnitude reduction in optical intensity whilst maintaining state-of-the-art sensitivity. It enable quantum noise limited tracking of single biomolecules as small as 3.5 nm, and surface-molecule interactions to be monitored over extended periods. By achieving quantum noise limited precision, our approach provides a pathway towards quantum-enhanced single-molecule biosensors.Comment: 17 pages, 4 figures, supplementary informatio

    Current and future graphics requirements for LaRC and proposed future graphics system

    Get PDF
    The findings of an investigation to assess the current and future graphics requirements of the LaRC researchers with respect to both hardware and software are presented. A graphics system designed to meet these requirements is proposed

    Squeezed state purification with linear optics and feed forward

    Get PDF
    A scheme for optimal and deterministic linear optical purification of mixed squeezed Gaussian states is proposed and experimentally demonstrated. The scheme requires only linear optical elements and homodyne detectors, and allows the balance between purification efficacy and squeezing degradation to be controlled. One particular choice of parameters gave a ten-fold reduction of the thermal noise with a corresponding squeezing degradation of only 11%. We prove optimality of the protocol, and show that it can be used to enhance the performance of quantum informational protocols such as dense coding and entanglement generation.Comment: 4 pages, 3 figure

    Laser cooling and control of excitations in superfluid helium

    Full text link
    Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.Comment: 6 pages, 4 figures. Supplementary information attache
    corecore