46 research outputs found

    Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer

    Get PDF
    To ensure food supply, phosphorus must be recycled, for which an appealing method is using struvite fertilizer from human excreta. One struvite from black water and another from urine were assessed for safety under Dutch regulations, and for effectiveness as P fertilizer in a maize field experiment and a literature review. Both struvites contained 12% P, 12% Mg, 6% N, and 0.5-1.5% of several micronutrients. Struvites did not exceed Dutch regulations for heavy metals or pathogens, and based on literature, organic toxins should be far below regulatory limits. In this study and 18 others, struvite appears to have similar effectiveness to soluble fertilizer. Early in the season, 200 kg P2O5 ha-1 of black water struvite and soluble phosphorus improved maize performance (

    Nutrient and energy recovery from urine

    Get PDF
    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization. In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and phosphorus). Nitrogen (N) compounds are removed as inert nitrogen gas and phosphorus (P) is for example removed as iron phosphate. About 80% of the N and 50% of the P in wastewater originate from urine1, but urine only contributes about 1% to the volume of this wastewater. High nutrient concentrations can be found in urine when it is collected separately from other wastewater streams. In this thesis, the nutrient and energy recovery from urine was investigated. At first, urine samples were analyzed for their composition. This characterization showed that the composition of the organic fraction in these samples was always similar. The differences between the concentrations of specific organic compounds were caused by dilution, due to individual consumption patterns of people. Two alternatives to the state-of-the-art nutrient recovery concepts are evaluated. These alternatives are on the one hand membrane capacitive deionization (MCDI) and on the other hand struvite precipitation combined with a microbial fuel cell (MFC). The evaluation of the MCDI system showed that nutrients can be concentrated from diluted urine. With its relatively low energy demand, MCDI could be an alternative to electrodialysis. The evaluation of the phosphate recovery by struvite precipitation combined with ammonium recovery and energy production by an MFC showed that this concept is most promising. The highest ammonium recovery rate achieved was 9.57 gN m-2 d-1 at a current density of 2.6 A m-2 (0.67 W m-2) using real undiluted urine. The ammonium recovery and energy production by an MFC (-10 kJ gN-1) can be considered a breakthrough, as usually energy is needed to recover (i.e. ammonia stripping 32.5 kJ gN-1)1 or convert (i.e. Sharon-Anammox 16 kJ gN-1)1 ammonium. Predictions show that approximately 5.1 kg struvite and 7.3 kg ammonia-nitrogen can be recovered from one cubic meter of urine, while producing approximately 20 kWh. A comparison to state-of-the-art technology showed that this process can be a good alternative for nutrient recovery from urine. Furthermore, ammonium recovery and energy production by an MFC can possibly be applied to other wastewater streams. </p

    An innovative bioelectrochemical system for the recovery of phosphorus, ammonia and electricity from urine

    Get PDF
    Ammonium and phosphate fertilizers are needed in agriculture to ensure a sufficient food production. The recovery of valuable nutrients (ammonium and phosphate) from waste(water) streams will help to overcome future shortages and reduce the need for phosphorous ore imports and energy intensive ammonia production. One person produces on average 1.5 L of urine per day, which contains about 9.1 g N /L and 1 g P /L. Urine contributes about 80% of the N load and 50% of the P load in conventional domestic wastewaters. These high nutrient concentrations in urine make it possible to develop more effective and energy efficient recovery technologies. In the ValueFromUrine project the phosphorus recovery will be performed by struvite precipitation from hydrolyzed urine and the resulting effluent will be used for ammonium recovery and simultaneously electricity generation in Bioelectrochemical systems. Bioelectrochemical systems (ie Microbial Fuel Cells) are engineered systems in which bacteria catalyze the oxidation of organic substrates and transfer electrons to anode and at the cathode oxygen is reduced. The aim of our project is to develop, demonstrate and evaluate an effective energy-efficient system for the recovery of nutrients from urine. Our treatment system will be able to recover >95% of the phosphorous (as struvite) and nitrogen (as struvite and ammonia / ammonium sulphate) while producing energy. These products can substitute salts used by the chemical industry, the artificial fertilizer industry and the agricultural sector which are currently obtained in a non-renewable and unsustainable wa

    Microbial acclimation to concentrated human urine in Bio-electrochemical system

    Get PDF
    The aim of this study is to promote the gradual acclimation of bioelectroactive microorganisms in BES to concentrated human urine, and to assess different anode potentials and carbon materials in Microbial Electrolysis Cells (MEC). Human urine is highly concentrated in nutrients, representing more than 80% of the total N load and around 45% of the total P load in municipal wastewater. Separation of urine from other wastewater streams is an interesting option to keep these valuable nutrients concentrated, in order to develop a suitable nutrient recovery concept. This work is integrated in the Value from Urine (VFU) concept, where phosphate is recovered from source segregated human urine through struvite precipitation and ammonia is recovered in a Bio-electrochemical System (BES). Enrichment of an anaerobic sludge community in urine-degrading-electroactive microorganisms was promoted in an Microbial Fuel Cell (MFC) operated with increasing concentrations of real human urine (after phosphorous removal, as struvite). This acclimated electroactive biofilm was used to inoculate the anode of MECs, aiming at H2 and ammonia production in the cathode compartment. Different carbon modified anodes and defined anode potentials were assessed in terms of performance and microbial diversity of the developed electroactive biofilms

    Bioelectrochemically-assisted recovery of valuable resources from urine

    Get PDF
    Book of Abstracts of CEB Annual Meeting 2017[Excerpt] Source separated urine is highly concentrated in nutrients and biodegradable compounds. This work explores the potential of combining nutrient recovery from urine with simultaneous energy production in bioelectrochemical systems (BES), under the FP7 project "ValueFromUrine". Non-spontaneous phosphorus (P) recovery by struvite precipitation was analysed by adding three different magnesium (Mg) sources (magnesium chloride (MgCl2), magnesium hydroxide (Mg(OH)2) and magnesium oxide (MgO)). A statistical design of experiments was used to evaluate the effect of Mg:P molar ratio (1:1, 1.5:1 and 2:1) combined with stirring speed (30, 45 and 60 rpm) for each Mg source tested. MgO at 2:1 molar ratio and a stirring speed of 30 rpm allowed to achieve the highest P recovery efficiency (99 %) with struvite crystals size of 50 to 100 μm [1]. Urine obtained after P recovery, showed high concentration of biodegradable compounds being subsequently fed as substrate in a microbial fuel cell (MFC). Microbial acclimation to urine was performed in a MFC resulting in an anaerobic community successfully enriched in “urine-degrading” electroactive microorganisms. When compared to the control assay operated without preliminary microbial enrichment (81±9 mA m-2), the acclimation method achieved significantly higher current density (455 mA m-2) (p<0.05). Tissierella and Paenibacillus were the dominant genus identified in the adapted microbial community. Tissierella can convert creatinine to acetate, whereas bacterial species belonging to the Paenibacillus genus are known to function as exoelectrogens. Corynebacterium that comprise urea-hydrolysing bacteria was also detected in the developed biofilms. [...]info:eu-repo/semantics/publishedVersio

    Effect of different carbon materials on the performance of microbial electrolysis cells (MECs) operated on urine and their microbial composition

    Get PDF
    ISMET 6 - General Meeting of the International Society for Microbial Electrochemistry and TechnologyUrine is rich in nitrogen and phosphorous and can considerably reduce domestic wastewater treatment requirements if collected separately. Source separated urine has been shown to be suitable for energy production and nutrients recovery in bioelectrochemical systems. However, there are still several challenges to overcome mainly related to organics conversion into electrical energy. In this study, anode performance of three microbial electrolysis cells (MECs) fed with urine using different carbon anodes, Keynol (phenolic-based), C-Tex (cellulose-based) and PAN (polyacrylonitrilebased) was compared. Two strategies were used to supply energy to the MECs; cell potential control (1' 1 assay) and anode potential control (2"d assay). In both assays, the C-Tex MEC outperformed MECs using Keynol and PAN. The C-Tex MEC with anode potential control at -0.300 V generated the highest current density of 904 mA m·2 , which was almost 3-fold higher than the MEC with Keynol, and 8-fold higher than the MEC with PAN. Analysis of anodes textural, chemical and electrochemical characteristics suggest that the higher external surface area of C-Tex enabled the higher current density generation compared to Keynol and PAN. The microbial composition on each anode and its correlation with the generated current was also investigated. No significant differences were observed in microbial diversity of the biofilm present in the studied anodes. Nonetheless, C-Tex had higher dominance of bacteria belonging to Luctobucillu/es and Enterobucteriules suggesting its relation with higher current generation.info:eu-repo/semantics/publishedVersio

    Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine

    Get PDF
    "Available online 15 February 2018"Anode performance of Microbial Electrolysis Cells (MECs) fed with urine using different anodes, Keynol (phenolic-based), C-Tex (cellulose-based) and PAN (polyacrylonitrile-based) was compared under cell potential control (1st assay) and anode potential control (2nd assay). In both assays, C-Tex MEC outperformed MECs using Keynol and PAN. C-Tex MEC under anode potential control (0.300V vs. Ag/AgCl) generated the highest current density (904mAm2), which was almost 3-fold higher than the Keynol MEC and 8-fold higher than the PAN MEC. Analysis of anodes textural, chemical and electrochemical characteristics suggest that the higher external surface area of C-Tex enabled higher current density generation compared to Keynol and PAN. Anodes properties did not influence significantly the microbial diversity of the developed biofilm. Nonetheless, C-Tex had higher relative abundance of bacteria belonging to Lactobacillales and Enterobacteriales suggesting its correlation with the higher current generation.This study was supported by the European Union's Seventh Programme for research, technological development and demonstration [Grant number 308535] and by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 [POCI-01- 0145-FEDER-006684], of Project RECI/BBB-EBI/0179/2012 [FCOMP01-0124-FEDER-027462], POCI-01-0145-FEDER-007679 [UID/CTM/ 50011/2013], and by BioTecNorte operation [NORTE-01-0145- FEDER-000004] funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. This work is a result of project “AIProcMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and of Project POCI-01-0145- FEDER-006984 e Associate Laboratory LSRE-LCM funded by ERDF through COMPETE2020 - Programa Operacional Competitividade e Internacionalizaçao (POCI) e and by national funds through FCT. The authors also would like to acknowledge the support of Wetsus, European Centre of Excellence for Sustainable Water Technology.info:eu-repo/semantics/publishedVersio

    Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species

    Get PDF
    This work presents a small scale and low cost ceramic based microbial fuel cell, utilising human urine into electricity, while producing clean catholyte into an initially empty cathode chamber through the process of electro-osmostic drag. It is the first time that the catholyte obtained as a by-product of electricity generation from urine was transparent in colour and reached pH>13 with high ionic conductivity values. The catholyte was collected and used ex situ as a killing agent for the inactivation of a pathogenic species such as Salmonella typhimurium, using a luminometer assay. Results showed that the catholyte solutions were efficacious in the inactivation of the pathogen organism even when diluted up to 1:10, resulting in more than 5 log-fold reduction in 4 min. Long-term impact of the catholyte on the pathogen killing was evaluated by plating Salmonella typhimurium on agar plates and showed that the catholyte possesses a long-term killing efficacy and continued to inhibit pathogen growth for 10 days

    Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser

    Get PDF
    This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the electrolysis of wastewater towards the self-generation of catholyte within the same reactor. The MFCs were designed to harvest the generated catholyte in the internal chamber, which showed that liquid production rates are largely proportional to electrical current generation. The catholyte demonstrated bactericidal properties, compared to the control (open-circuit) diffusate, and reduced observable biofilm formation on the cathode electrode. Killing effects were confirmed using bacterial kill curves constructed by exposing a bioluminescent Escherichia coli target, as a surrogate coliform, to catholyte where a rapid kill rate was observed. Therefore, MFCs could serve as a water recovery system, a disinfectant/cleaner generator that limits undesired biofilm formation and as a washing agent in waterless urinals to improve sanitation. This simple and ready to implement MFC system can convert organic waste directly into electricity and self-driven nitrogen along with water recovery. This could lead to the development of energy positive bioprocesses for sustainable wastewater treatment

    Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

    Get PDF
    In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord
    corecore