2,704 research outputs found
Information-Based Physics: An Observer-Centric Foundation
It is generally believed that physical laws, reflecting an inherent order in
the universe, are ordained by nature. However, in modern physics the observer
plays a central role raising questions about how an observer-centric physics
can result in laws apparently worthy of a universal nature-centric physics.
Over the last decade, we have found that the consistent apt quantification of
algebraic and order-theoretic structures results in calculi that possess
constraint equations taking the form of what are often considered to be
physical laws. I review recent derivations of the formal relations among
relevant variables central to special relativity, probability theory and
quantum mechanics in this context by considering a problem where two observers
form consistent descriptions of and make optimal inferences about a free
particle that simply influences them. I show that this approach to describing
such a particle based only on available information leads to the mathematics of
relativistic quantum mechanics as well as a description of a free particle that
reproduces many of the basic properties of a fermion. The result is an approach
to foundational physics where laws derive from both consistent descriptions and
optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of
43 pages and 9 Figure
Interactions of satellite-speed helium atoms with satellite surfaces. 3: Drag coefficients from spatial and energy distributions of reflected helium atoms
Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included
Binary Decision Diagrams: from Tree Compaction to Sampling
Any Boolean function corresponds with a complete full binary decision tree.
This tree can in turn be represented in a maximally compact form as a direct
acyclic graph where common subtrees are factored and shared, keeping only one
copy of each unique subtree. This yields the celebrated and widely used
structure called reduced ordered binary decision diagram (ROBDD). We propose to
revisit the classical compaction process to give a new way of enumerating
ROBDDs of a given size without considering fully expanded trees and the
compaction step. Our method also provides an unranking procedure for the set of
ROBDDs. As a by-product we get a random uniform and exhaustive sampler for
ROBDDs for a given number of variables and size
Boolean networks with reliable dynamics
We investigated the properties of Boolean networks that follow a given
reliable trajectory in state space. A reliable trajectory is defined as a
sequence of states which is independent of the order in which the nodes are
updated. We explored numerically the topology, the update functions, and the
state space structure of these networks, which we constructed using a minimum
number of links and the simplest update functions. We found that the clustering
coefficient is larger than in random networks, and that the probability
distribution of three-node motifs is similar to that found in gene regulation
networks. Among the update functions, only a subset of all possible functions
occur, and they can be classified according to their probability. More
homogeneous functions occur more often, leading to a dominance of canalyzing
functions. Finally, we studied the entire state space of the networks. We
observed that with increasing systems size, fixed points become more dominant,
moving the networks close to the frozen phase.Comment: 11 Pages, 15 figure
Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb
Wedetermined the embryonic origins of adult forebrain subventricular zone (SVZ) stem cells by Cre-lox fate mapping in transgenic mice. We found that all parts of the telencephalic neuroepithelium, including the medial ganglionic eminence and lateral ganglionic eminence (LGE) and the cerebral cortex, contribute multipotent, self-renewing stem cells to the adult SVZ. Descendants of the embryonic LGE and cortex settle in ventral and dorsal aspects of the dorsolateral SVZ, respectively. Both populations contribute new (5-bromo-2(')-deoxyuridine- labeled) tyrosine hydroxylase- and calretinin-positive interneurons to the adult olfactory bulb. However, calbindin-positive interneurons in the olfactory glomeruli were generated exclusively by LGE- derived stem cells. Thus, different SVZ stem cells have different embryonic origins, colonize different parts of the SVZ, and generate different neuronal progeny, suggesting that some aspects of embryonic patterning are preserved in the adult SVZ. This could have important implications for the design of endogenous stem cell-based therapies in the future
Map equation for link community
Community structure exists in many real-world networks and has been reported
being related to several functional properties of the networks. The
conventional approach was partitioning nodes into communities, while some
recent studies start partitioning links instead of nodes to find overlapping
communities of nodes efficiently. We extended the map equation method, which
was originally developed for node communities, to find link communities in
networks. This method is tested on various kinds of networks and compared with
the metadata of the networks, and the results show that our method can identify
the overlapping role of nodes effectively. The advantage of this method is that
the node community scheme and link community scheme can be compared
quantitatively by measuring the unknown information left in the networks
besides the community structure. It can be used to decide quantitatively
whether or not the link community scheme should be used instead of the node
community scheme. Furthermore, this method can be easily extended to the
directed and weighted networks since it is based on the random walk.Comment: 9 pages,5 figure
Pattern Avoidance in Poset Permutations
We extend the concept of pattern avoidance in permutations on a totally
ordered set to pattern avoidance in permutations on partially ordered sets. The
number of permutations on that avoid the pattern is denoted
. We extend a proof of Simion and Schmidt to show that for any poset , and we exactly classify the posets for which
equality holds.Comment: 13 pages, 1 figure; v2: corrected typos; v3: corrected typos and
improved formatting; v4: to appear in Order; v5: corrected typos; v6: updated
author email addresse
Statistical significance of communities in networks
Nodes in real-world networks are usually organized in local modules. These
groups, called communities, are intuitively defined as sub-graphs with a larger
density of internal connections than of external links. In this work, we
introduce a new measure aimed at quantifying the statistical significance of
single communities. Extreme and Order Statistics are used to predict the
statistics associated with individual clusters in random graphs. These
distributions allows us to define one community significance as the probability
that a generic clustering algorithm finds such a group in a random graph. The
method is successfully applied in the case of real-world networks for the
evaluation of the significance of their communities.Comment: 9 pages, 8 figures, 2 tables. The software to calculate the C-score
can be found at http://filrad.homelinux.org/cscor
Greater Forearm Blood Flow is Associated With Higher Physical Activity in Older Individuals
Please refer to the pdf version of the abstract located adjacent to the title
Knuthian Drawings of Series-Parallel Flowcharts
Inspired by a classic paper by Knuth, we revisit the problem of drawing
flowcharts of loop-free algorithms, that is, degree-three series-parallel
digraphs. Our drawing algorithms show that it is possible to produce Knuthian
drawings of degree-three series-parallel digraphs with good aspect ratios and
small numbers of edge bends.Comment: Full versio
- …
