Nodes in real-world networks are usually organized in local modules. These
groups, called communities, are intuitively defined as sub-graphs with a larger
density of internal connections than of external links. In this work, we
introduce a new measure aimed at quantifying the statistical significance of
single communities. Extreme and Order Statistics are used to predict the
statistics associated with individual clusters in random graphs. These
distributions allows us to define one community significance as the probability
that a generic clustering algorithm finds such a group in a random graph. The
method is successfully applied in the case of real-world networks for the
evaluation of the significance of their communities.Comment: 9 pages, 8 figures, 2 tables. The software to calculate the C-score
can be found at http://filrad.homelinux.org/cscor